molecular formula C6H2BrF3 B061163 1-Bromo-2,3,4-trifluorobenzene CAS No. 176317-02-5

1-Bromo-2,3,4-trifluorobenzene

Número de catálogo: B061163
Número CAS: 176317-02-5
Peso molecular: 210.98 g/mol
Clave InChI: MUUAQFJJUGVBGB-UHFFFAOYSA-N
Atención: Solo para uso de investigación. No para uso humano o veterinario.
En Stock
  • Haga clic en CONSULTA RÁPIDA para recibir una cotización de nuestro equipo de expertos.
  • Con productos de calidad a un precio COMPETITIVO, puede centrarse más en su investigación.

Descripción

Context within Halogenated Aromatics and Organofluorine Chemistry

The study of 1-Bromo-2,3,4-trifluorobenzene is situated at the intersection of halogenated aromatics and the broader field of organofluorine chemistry. This area of research is driven by the significant impact that fluorine and other halogens have on the physicochemical properties of organic molecules.

Fluorinated aromatic compounds are a cornerstone of modern chemical science, with wide-ranging applications in pharmaceuticals, agrochemicals, and materials science. numberanalytics.comnumberanalytics.comeuropa.eu The introduction of fluorine atoms into an aromatic ring dramatically alters its electronic and steric properties. numberanalytics.com Fluorine's high electronegativity can withdraw electron density, influencing the reactivity of the aromatic system. numberanalytics.com This modification can lead to enhanced metabolic stability, increased lipophilicity, and improved bioavailability in drug candidates. numberanalytics.com For instance, fluorinated aromatics are key components in drugs like the antidepressant fluoxetine (B1211875) and anticancer agents such as 5-fluorouracil. numberanalytics.comnumberanalytics.com

In materials science, the presence of fluorine imparts desirable characteristics such as high thermal stability and chemical resistance. numberanalytics.com These properties are leveraged in the creation of advanced materials, including fluoropolymers like Polytetrafluoroethylene (PTFE) and components for Organic Light-Emitting Diodes (OLEDs). numberanalytics.com The unique molecular orbital contributions of fluorine can further stabilize the aromatic ring, leading to higher resistance to addition reactions and contributing to the robustness of polymers that incorporate these structures. acs.org The development of synthetic methods to access molecules with multiple C-F bonds is crucial for advancing this field. researchgate.net

The field of organofluorine chemistry predates the isolation of elemental fluorine itself. researchgate.netnih.govjst.go.jp One of the earliest reported syntheses of an organofluorine compound was in 1835 by Dumas and Péligot, who prepared fluoromethane. wikipedia.org A significant step forward came in 1862 when Alexander Borodin synthesized benzoyl fluoride (B91410) through halogen exchange, a method now widely used in the fluorochemical industry. nih.govwikipedia.org

Initially, the synthesis of these compounds was fraught with challenges due to the high reactivity of fluorine. numberanalytics.com However, the field expanded dramatically, particularly during World War II, driven by military applications such as the Manhattan Project, which required inert fluoropolymers and liquid perfluorinated molecules for uranium enrichment. researchgate.net After the war, this technology found civilian applications, leading to the commercial production of various fluorocarbons and fluoropolymers like Teflon. researchgate.net The development of new fluorinating agents and synthetic methodologies has since enabled the efficient synthesis of a vast array of organofluorine compounds, which are now integral to many areas of technology and daily life. numberanalytics.comwikipedia.org

This compound is a polyfluorinated aromatic compound, a class of molecules extensively used in materials science due to their high electron affinity and unique intermolecular interactions. researchgate.net It is specifically a bromotrifluorobenzene, a type of halogenated aromatic that serves as a versatile intermediate in various chemical syntheses. chemimpex.com

The specific arrangement of one bromine and three fluorine atoms on the benzene (B151609) ring makes this compound a valuable building block. The presence of multiple fluorine atoms activates the ring for certain reactions, while the bromine atom provides a reactive site for transformations such as metal-halogen exchange or cross-coupling reactions. sigmaaldrich.comresearchgate.net Research on the functionalization of the closely related 1,2,3-trifluorobenzene (B74907) and its bromo derivatives demonstrates that the strategic application of organometallic reagents can control the regiospecificity of subsequent reactions. researchgate.net This allows for the selective introduction of functional groups at different positions on the ring, highlighting the synthetic potential of compounds like this compound. researchgate.net

Table 1: Physicochemical Properties of this compound

Property Value
CAS Number 176317-02-5 nih.gov
Molecular Formula C₆H₂BrF₃ nih.gov
Molecular Weight 210.98 g/mol nih.gov
Boiling Point 47 °C (at 60 mmHg) chemicalbook.com
Density 1.777 g/mL (at 25 °C) chemicalbook.com
Refractive Index n20/D 1.487 chemicalbook.com

| Form | Clear liquid chemicalbook.com |

Research Rationale and Scope of Investigation

The investigation of this compound is propelled by the need to expand the toolkit of synthetic chemistry and to develop new materials with tailored properties. Its study contributes to both fundamental understanding and practical applications.

While this compound and its isomers are utilized as intermediates, a comprehensive scholarly understanding of their reaction mechanisms and full synthetic potential remains an area for further exploration. Much of the available literature focuses on its application as a building block for more complex molecules, such as in the synthesis of biologically active compounds or functional materials. chemicalbook.comlookchem.comsmolecule.com There appears to be a gap in the systematic investigation of its reactivity under a broad spectrum of conditions. Detailed mechanistic studies, exploring the kinetics and thermodynamics of its various transformations, would provide a deeper understanding. Furthermore, a thorough exploration of its utility in emerging fields, such as photocatalysis or electrochemistry, is not yet widely documented.

This compound serves as a valuable precursor in the development of advanced synthetic methodologies. The distinct reactivity of the bromine and fluorine substituents allows for sequential and site-selective functionalization. For example, organometallic-based methods can be employed to achieve regioflexible functionalization, enabling the synthesis of complex, highly substituted aromatic compounds that would be difficult to access through other means. researchgate.net

In material science, polyfluorinated aromatic compounds are integral to the design of materials with specific electronic, optical, and physical properties. numberanalytics.comresearchgate.net While specific applications of this compound in materials are not extensively detailed in readily available literature, its structure suggests potential as a monomer or precursor for specialty polymers, liquid crystals, or organic electronic materials. Its isomer, 1-bromo-2,4,5-trifluorobenzene (B152817), is known to be used in the synthesis of trifluorobenzoic acids, which are themselves important intermediates. sigmaaldrich.com The use of brominated aromatics in the synthesis of fluorescent reagents and biologically active peptides further underscores the potential contribution of this compound to these fields. researchgate.net

Table 2: List of Chemical Compounds Mentioned

Compound Name
This compound
1-bromo-2,4,5-trifluorobenzene
1,2,3-trifluorobenzene
1,2,4-trifluorobenzene
1,2,4,5-tetrabromofluorobenzene
2,3,4-Trifluorobromobenzene
3-bromo-2,5,6-trifluorobenzoic acid
2,4,5-trifluorobenzoic acid
5-fluorouracil
5-nitro-6-methylquinoline carboxylic acid
Azodiisobutyl cyanide
Benzoyl fluoride
Carbon tetrachloride
Chloroform
Fluoxetine
Fluoromethane
i-PrMgBr
Iron powder
Liquid bromine
Polytetrafluoroethylene (PTFE)
Trifluoroacetic acid

Direct Halogenation Approaches

Direct halogenation involves the introduction of a bromine atom onto the 1,2,3-trifluorobenzene ring. This can be accomplished through either electrophilic aromatic substitution or a free radical mechanism.

Electrophilic Bromination Mechanisms and Regioselectivity

The regioselectivity of this reaction is crucial. The three fluorine atoms on 1,2,3-trifluorobenzene exert both inductive and resonance effects, which influence the position of bromination. While fluorine atoms are strongly electron-withdrawing inductively, they can also donate electron density through resonance. The interplay of these effects directs the incoming bromine atom. For 1,2,3-trifluorobenzene, the substitution is directed to the available positions on the ring, and the formation of this compound is a result of substitution at a specific carbon. 52.86.42

To enhance the electrophilicity of the bromine molecule, a Lewis acid catalyst such as ferric bromide (FeBr₃) is often employed. fiveable.me The Lewis acid coordinates with a bromine molecule, polarizing the Br-Br bond and generating a more potent electrophilic species, which can be represented as Br⁺ or a Br-Br-FeBr₃ complex. fiveable.mechegg.com This activated electrophile is then attacked by the electron-rich π system of the 1,2,3-trifluorobenzene ring. fiveable.me The presence of the catalyst facilitates the reaction, which might otherwise be slow due to the deactivated nature of the fluorinated benzene ring. libretexts.org The catalytic cycle is completed by the deprotonation of the arenium ion, with the resulting proton reacting with the [FeBr₄]⁻ species to regenerate the FeBr₃ catalyst and form hydrogen bromide (HBr). fiveable.me

Table 1: Role of Lewis Acids in Electrophilic Bromination
Catalyst Function Mechanism Step
FeBr₃Activates the brominating agentFormation of a highly electrophilic bromine species
FeBr₃Stabilizes the transition stateLowers the activation energy for the formation of the arenium ion
FeBr₃Regenerated in the reactionParticipates in the catalytic cycle

The choice of solvent can significantly influence the outcome of electrophilic aromatic bromination. Solvents can affect the reactivity of the electrophile and the stability of the intermediates. researchgate.netugent.bevub.be In a study on the bromination of various benzene derivatives, it was found that both apolar (like CCl₄) and polar (like acetonitrile) solvents can be used, and the reaction mechanism can be influenced by the solvent's polarity. researchgate.netugent.bevub.benih.gov For instance, polar solvents can stabilize charged intermediates like the arenium ion, potentially affecting the reaction rate and selectivity. researchgate.net While specific data on the solvent effects for the direct bromination of 1,2,3-trifluorobenzene to form the 1-bromo isomer is not extensively detailed in the provided results, general principles suggest that the solvent choice is a critical parameter to control the regiochemical outcome in related reactions. researchgate.netugent.bevub.be

Radical Bromination Pathways

An alternative to electrophilic substitution is radical bromination. This method involves the generation of bromine radicals, which then react with the aromatic substrate. byjus.com This type of reaction is typically initiated by light or a radical initiator. byjus.comlibretexts.org

Radical chain reactions are initiated by the formation of a small number of reactive species, typically radicals. uky.edu One common radical initiator is Azobisisobutyronitrile (AIBN). wikipedia.orgyoutube.com When heated, AIBN decomposes to form two 2-cyano-2-propyl radicals and a molecule of nitrogen gas. wikipedia.org This decomposition is favorable due to the increase in entropy from the release of nitrogen gas. wikipedia.org These initially formed radicals can then abstract a bromine atom from a bromine source like N-bromosuccinimide (NBS) or molecular bromine to generate the bromine radical (Br•) required for the propagation steps. wikipedia.orgorganic-chemistry.org The use of AIBN is advantageous as it does not produce oxygenated byproducts. wikipedia.orgyoutube.com

Table 2: Common Radical Initiators and Their Properties
Initiator Decomposition Trigger Products Key Features
Azobisisobutyronitrile (AIBN)Heat (typically 66-72 °C)2-cyano-2-propyl radicals, N₂ gasNo oxygenated byproducts, soluble in organic solvents
Benzoyl PeroxideHeat or UV lightPhenyl radicals, CO₂Can also initiate polymerization
UV lightPhotonsHomolytic cleavage of Br-Br bondDirect formation of bromine radicals

The propagation phase of a radical chain reaction consists of a series of steps where a radical reacts with a non-radical molecule to form a new radical, which continues the chain. uky.eduwikipedia.org In the context of brominating an aromatic ring, a bromine radical can add to the benzene ring, forming a radical intermediate. This intermediate can then react with a bromine source to yield the brominated product and regenerate a bromine radical. byjus.com

Controlling the propagation steps is essential to ensure the desired product is formed efficiently and to minimize side reactions. libretexts.org The concentration of radicals must be kept low to prevent premature termination of the chain reaction. libretexts.org The choice of brominating agent is also critical. For instance, N-bromosuccinimide (NBS) is often used in radical brominations as it can provide a low, constant concentration of bromine in the reaction mixture, which is crucial for selectivity. organic-chemistry.org The selectivity of radical bromination can also be influenced by the stability of the radical intermediates formed. youtube.com

A patent describes a method for synthesizing 1-bromo-2,4,5-trifluorobenzene that involves both a Lewis acid (iron powder) and a radical initiator (azobisisobutyl cyanide). google.comgoogle.com In this process, liquid bromine is added at a controlled temperature, followed by the addition of the radical initiator at a higher temperature. google.comgoogle.com This suggests a complex mechanism where both electrophilic and radical pathways may be operative or where the initiator influences a predominantly radical process.

Synthetic Methodologies for this compound

The synthesis of this compound, a key intermediate in the creation of various industrial and pharmaceutical compounds, can be achieved through several strategic pathways. These methods primarily involve the chemical transformation of functional groups on a trifluorinated benzene ring.

Propiedades

IUPAC Name

1-bromo-2,3,4-trifluorobenzene
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C6H2BrF3/c7-3-1-2-4(8)6(10)5(3)9/h1-2H
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

MUUAQFJJUGVBGB-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

C1=CC(=C(C(=C1F)F)F)Br
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C6H2BrF3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID90369810
Record name 1-Bromo-2,3,4-trifluorobenzene
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID90369810
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

210.98 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

CAS No.

176317-02-5
Record name 1-Bromo-2,3,4-trifluorobenzene
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID90369810
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name 1-Bromo-2,3,4-trifluorobenzene
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/information-on-chemicals
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.

Chemical Reactivity and Mechanistic Investigations of 1 Bromo 2,3,4 Trifluorobenzene

The reactivity of 1-bromo-2,3,4-trifluorobenzene is largely dictated by the presence of three electron-withdrawing fluorine atoms on the benzene (B151609) ring, which significantly influences its behavior in various chemical transformations.

Nucleophilic Aromatic Substitution (SNAr) Reactions

The electron-deficient nature of the aromatic ring in this compound makes it an excellent substrate for nucleophilic aromatic substitution (SNAr) reactions. The strong inductive effect of the fluorine atoms activates the ring toward attack by nucleophiles.

Regioselectivity of Fluorine Displacement

In SNAr reactions involving polyfluorinated aromatic compounds, a fluorine atom is typically displaced rather than a bromine atom. The regioselectivity of this displacement is governed by the ability of the electron-withdrawing groups to stabilize the intermediate Meisenheimer complex. For this compound, nucleophilic attack is anticipated to occur preferentially at the C-4 position. This preference is because the negative charge of the intermediate anion is effectively stabilized by the adjacent fluorine at C-3 and the fluorine at C-2, which is para to the site of attack.

Influence of Electronic and Steric Properties on SNAr Pathways

The efficiency and pathway of SNAr reactions are heavily influenced by both electronic and steric factors.

Electronic Properties: The primary driving force for SNAr in this molecule is the powerful electron-withdrawing inductive effect (-I) of the three fluorine atoms. govtpgcdatia.ac.in This effect reduces the electron density of the π-system, making the aromatic ring electrophilic and thus susceptible to attack by nucleophiles. govtpgcdatia.ac.in The presence of multiple fluorine atoms enhances the stability of the negatively charged σ-complex (Meisenheimer complex) that forms during the reaction, lowering the activation energy for the substitution. govtpgcdatia.ac.in The substitution pattern is directed to positions that best stabilize this intermediate, typically ortho or para to the activating fluorine atoms. govtpgcdatia.ac.in

Steric Properties: While electronic effects are dominant, steric hindrance can also influence the reaction. The fluorine atoms at the C-2 and C-3 positions may provide some steric shielding. However, in highly electron-poor systems like this compound, the electronic activation is generally the deciding factor for reactivity and regioselectivity.

Metal-Catalyzed Cross-Coupling Reactions

This compound serves as a competent electrophilic partner in a variety of metal-catalyzed cross-coupling reactions, enabling the formation of complex biaryl structures. Polyfluorinated brominated compounds have been demonstrated to be suitable electrophiles for these transformations. researchgate.net

Suzuki-Miyaura Coupling Protocols

The Suzuki-Miyaura coupling is a robust method for forming carbon-carbon bonds, valued for its mild conditions and functional group tolerance. acs.org this compound has been successfully employed in such reactions to synthesize polyfluorinated biphenyls. acs.org The reaction typically involves a palladium catalyst, a phosphine (B1218219) ligand, and a base to couple the aryl halide with an organoboron compound. nih.gov

An example protocol demonstrates the successful coupling of this compound with a boronic acid derivative, highlighting the viability of this substrate in forming highly electron-poor biaryl compounds. acs.org

ElectrophileNucleophileCatalyst SystemBaseSolventYieldReference
This compound5,5-Dimethyl-2-(2,4,5-trifluorophenyl)-1,3,2-dioxaborinanePd₂(dba)₃ / RuPhosK₃PO₄Dioxane77% acs.org

Stille Coupling and Other Carbon-Carbon Bond Forming Reactions

The Stille coupling is another powerful C-C bond-forming reaction that pairs an organostannane with an organic halide, catalyzed by palladium. organic-chemistry.org This reaction is known for its versatility and tolerance of a wide array of functional groups. organic-chemistry.org

Given the demonstrated reactivity of this compound as an electrophile in Suzuki-Miyaura coupling, it is a strong candidate for participation in Stille coupling and other related palladium-catalyzed cross-coupling reactions. While specific literature examples for the Stille coupling of this compound were not identified in the search, its electronic properties suggest it would readily undergo oxidative addition to a Pd(0) center, the initial step in the catalytic cycle of many cross-coupling reactions, including Stille, Heck, and Negishi couplings.

Organometallic Reagent Chemistry

The bromine atom in this compound provides a handle for the generation of potent organometallic nucleophiles. This is typically achieved through halogen-metal exchange.

For instance, treatment of this compound with elemental magnesium would lead to the formation of the corresponding Grignard reagent, (2,3,4-trifluorophenyl)magnesium bromide. Similarly, reaction with an organolithium reagent such as n-butyllithium at low temperatures would produce the highly reactive 2,3,4-trifluorophenyllithium. The formation of Grignard reagents from related bromo-polyfluorobenzene compounds has been documented as a pathway to synthesize more complex fluorinated molecules. acs.org

These organometallic species are powerful nucleophiles in their own right. They can be used in a wide range of subsequent reactions, such as addition to carbonyls, nitriles, and other electrophiles, providing a route to a diverse array of functionalized polyfluorinated aromatic compounds. The strategic use of these reagents allows for precise control over the functionalization of the trifluorophenyl scaffold. researchgate.net

Grignard Reagent Formation and Applications

The presence of a bromine atom on the aromatic ring of this compound allows for the formation of the corresponding Grignard reagent, 2,3,4-trifluorophenylmagnesium bromide. This organomagnesium compound is a valuable intermediate in organic synthesis, enabling the introduction of the 2,3,4-trifluorophenyl moiety onto various substrates. The formation is typically achieved through the reaction of this compound with magnesium metal in an anhydrous ether solvent, such as tetrahydrofuran (B95107) (THF).

The reactivity of this Grignard reagent is demonstrated in its use for creating carbon-carbon bonds. For instance, it can be used in reactions with ketone derivatives. One documented application involves the reaction of a Grignard reagent prepared from a trifluorobromobenzene isomer with a substituted cyclohexyl acetyl chloride in the presence of iron acetylacetonate (B107027) to form a ketone derivative. googleapis.com Similarly, the Grignard reagent derived from 1-bromo-2,3-difluorobenzene (B1273032) has been reacted with trans-4-propylcyclohexylcyclohexenone. ambeed.com While these examples involve closely related structures, they illustrate a primary application pathway for the Grignard reagent of this compound: nucleophilic addition to carbonyl compounds and acid chlorides to forge new C-C bonds, leading to more complex molecular architectures.

Table 1: Representative Applications of Related Trifluorophenyl Grignard Reagents

Grignard PrecursorElectrophileProduct TypeRef.
1-Bromo-3,4,5-trifluorobenzene (B146875)trans-4-butylcyclohexylacetyl chlorideKetone googleapis.com
1-Bromo-2,3-difluorobenzenetrans-4-propylcyclohexylcyclohexenoneTertiary Alcohol ambeed.com
1-Bromo-2,4,5-trifluorobenzene (B152817)L-aspartic acid derivativeβ-Amino Acid Derivative researchgate.net

Directed ortho-Metallation and Halogen Migration Phenomena

Directed ortho-metallation (DoM) is a powerful strategy for regioselective functionalization of aromatic rings, guided by a directing metalation group (DMG). wikipedia.org A DMG, typically a heteroatom-containing functional group, coordinates to an organolithium reagent (like n-butyllithium), facilitating deprotonation at the adjacent ortho position. wikipedia.orgorganic-chemistry.org In polyhalogenated aromatic systems, fluorine atoms can act as moderate directing groups, and their electronic influence significantly acidifies the ortho-protons.

For fluorinated bromo-benzenes, a competition exists between direct deprotonation (lithiation) and bromine-lithium exchange. The outcome is highly dependent on the reaction conditions, particularly the base used and the temperature. Studies on related compounds, such as 1-bromo-2,4-difluorobenzene, show that strong, non-nucleophilic bases like lithium diisopropylamide (LDA) tend to cause deprotonation at the most acidic site, which is typically the position between two fluorine atoms or ortho to a fluorine atom. psu.edu For this compound, the most acidic proton is expected to be at the C5 position, flanked by a fluorine (at C4) and a bromine (at C1). Lithiation at this site would yield a functionalized product after quenching with an electrophile.

The use of alkyllithium reagents like n-BuLi at low temperatures often favors bromine-lithium exchange over deprotonation. psu.edu However, the specific regiochemistry of metallation for this compound itself is a subject of detailed investigation. Research on 1,2,3-trifluorobenzene (B74907) has shown that ortho-lithiation can occur, which upon quenching with bromine yields this compound, demonstrating the directing effect of the fluorine atoms. thieme-connect.de Halogen migration, such as an anionic-Fries rearrangement, can sometimes occur in ortho-lithiated species, although this is more common with groups like carbamates. uwindsor.ca

Other Significant Reaction Pathways

Electrophilic Substitution Reactions on the Aromatic Ring

Electrophilic aromatic substitution (SEAr) is a fundamental reaction class for aromatic compounds. researchgate.net In this compound, the reactivity and regioselectivity of such substitutions are governed by the combined electronic effects of the four halogen substituents. Both bromine and fluorine are deactivating groups due to their inductive electron-withdrawal, making the ring less reactive towards electrophiles than benzene. However, they are also ortho-, para-directing because of resonance effects where their lone pairs can stabilize the arenium ion intermediate.

The directing influence in a poly-substituted ring is a cumulative effect. Fluorine is more electronegative but a better resonance donor than bromine. In cases of conflict, the orientation of the incoming electrophile is determined by the net activation/deactivation and steric hindrance. For fluorinated aromatics, electrophilic attack is often directed to the position para to a fluorine atom. Given the substitution pattern of this compound, the two available positions for substitution are C5 and C6. The C5 position is ortho to the C4-fluorine and meta to the C3- and C2-fluorines. The C6 position is ortho to the bromine and the C2-fluorine. Predicting the major product requires careful consideration of the competing directing effects. Synthesis of derivatives like 1-bromo-3,4-difluoro-2-nitrobenzene (B1613911) highlights that nitration is a possible electrophilic substitution pathway for related compounds.

Reduction Reactions (if applicable to derivatives)

While this compound itself does not typically undergo reduction of the aromatic ring or the halogens under standard conditions, its derivatives can participate in important reduction reactions. A common synthetic strategy involves introducing a functional group that can be subsequently reduced.

For example, if an electrophilic nitration reaction were performed to yield a nitro-1-bromo-2,3,4-trifluorobenzene derivative, the nitro group could be readily reduced to an amino group (-NH2). This transformation is typically accomplished using reducing agents like hydrogen gas with a palladium catalyst, or metals such as tin or iron in acidic media. smolecule.com This pathway provides a route to polyfluoro-bromo-anilines, which are versatile building blocks for pharmaceuticals and agrochemicals.

Table 2: Potential Reduction of a Functionalized this compound Derivative

DerivativeFunctional GroupReducing AgentProduct Functional GroupRef.
Nitro-1-bromo-2,3,4-trifluorobenzeneNitro (-NO2)H2/Pd, Sn/HCl, or Fe/HClAmino (-NH2) smolecule.com

Advanced Spectroscopic Characterization and Computational Studies

Nuclear Magnetic Resonance (NMR) Spectroscopy in Structural Elucidationnih.gov

NMR spectroscopy is a cornerstone technique for the structural analysis of 1-Bromo-2,3,4-trifluorobenzene. The presence of spin-active nuclei such as ¹H, ¹³C, and ¹⁹F allows for a comprehensive characterization of the molecular framework through one-dimensional and two-dimensional NMR experiments.

The ¹H NMR spectrum of this compound is expected to display two distinct signals corresponding to the two chemically non-equivalent protons on the aromatic ring (H-5 and H-6). libretexts.org Due to the electron-withdrawing effects of the bromine and fluorine substituents, these signals appear in the downfield region of the spectrum, typical for aromatic protons. libretexts.org

The signal for each proton is a complex multiplet. This complexity arises from:

Vicinal ¹H-¹H coupling (³JHH) between the H-5 and H-6 protons.

¹H-¹⁹F coupling to the neighboring fluorine atoms. H-5 will couple to the fluorine at C-4 (³JHF), and H-6 will show a smaller long-range coupling to the fluorine at C-4 (⁴JHF). Both protons will also experience coupling to the fluorine atoms at C-2 and C-3, further complicating the splitting pattern.

Note: Precise chemical shifts and coupling constants require experimental data from a high-resolution NMR spectrometer.

The ¹³C NMR spectrum provides a direct map of the carbon skeleton, showing six distinct signals for the six unique carbon atoms in the benzene (B151609) ring. The chemical shifts are influenced by the attached substituents (Br, F, or H). A key feature of the spectrum is the presence of carbon-fluorine coupling (JCF), which splits the signals of the fluorine-bearing carbons (C-2, C-3, and C-4) and, to a lesser extent, adjacent carbons. researchgate.net The carbon attached to bromine (C-1) typically appears in a characteristic chemical shift range. Proton-decoupled ¹³C NMR spectra simplify the analysis by removing C-H coupling, leaving only the C-F coupling patterns. oup.com

Note: The chemical shift ranges are approximate and can be influenced by solvent and experimental conditions.

¹⁹F NMR is a highly sensitive and informative technique for characterizing fluorinated organic compounds due to the 100% natural abundance and high gyromagnetic ratio of the ¹⁹F nucleus. wikipedia.orgaiinmr.com For this compound, the ¹⁹F NMR spectrum is expected to show three distinct signals, one for each of the chemically non-equivalent fluorine atoms at positions C-2, C-3, and C-4.

Each signal appears as a complex multiplet due to:

¹⁹F-¹⁹F coupling between adjacent fluorine atoms (e.g., ³JFF between F-2/F-3 and F-3/F-4). These coupling constants are typically larger than ¹H-¹H coupling constants. wikipedia.org

¹⁹F-¹H coupling to the aromatic protons. For example, the F-4 signal will be split by coupling to H-5 (³JFH) and H-6 (⁴JFH).

Analysis of these coupling patterns is crucial for the unambiguous assignment of each fluorine signal to its specific position on the benzene ring. news-medical.netoxinst.com For instance, isomers like 1-bromo-3,4,5-trifluorobenzene (B146875) show a different number of signals and splitting patterns, highlighting the power of ¹⁹F NMR in distinguishing between positional isomers. news-medical.netblogspot.com

Infrared (IR) and Raman Spectroscopy for Vibrational Analysisnih.gov

IR and Raman spectroscopy are complementary techniques used to investigate the vibrational modes of a molecule. dokumen.pub The spectra provide a characteristic fingerprint, allowing for the identification of functional groups and providing insight into the molecular structure. For this compound, computational methods such as Density Functional Theory (DFT) are often employed to aid in the assignment of the observed vibrational bands. nih.govresearchgate.net

The vibrational spectra of this compound can be analyzed by identifying the absorption bands corresponding to specific bond vibrations.

C-H Vibrations : The aromatic C-H stretching vibrations typically appear in the region of 3000-3100 cm⁻¹. The C-H in-plane and out-of-plane bending vibrations are observed at lower frequencies.

C-F Vibrations : Strong absorption bands corresponding to C-F stretching modes are characteristic of fluorinated benzenes and are expected in the 1200-1300 cm⁻¹ region. researchgate.net

Aromatic Ring Vibrations : The C=C stretching vibrations of the benzene ring typically result in a series of bands in the 1400-1650 cm⁻¹ region. asianpubs.org Ring breathing and other deformation modes occur at lower wavenumbers.

C-Br Vibration : The C-Br stretching vibration is expected at lower frequencies, typically in the range of 500-650 cm⁻¹, although it can be mixed with other ring deformation modes.

Note: These are general ranges, and the precise frequencies are obtained from the experimental IR and Raman spectra. nih.gov

Vibrational spectroscopy, in conjunction with computational studies, can confirm the molecular symmetry. conicet.gov.ar For molecules with potential rotational freedom, such as those with non-linear side chains, techniques like matrix isolation IR spectroscopy can be used to "freeze" different conformers and study them individually. acs.org However, due to the fused nature of the substituents on the rigid benzene ring, this compound is expected to exist predominantly in a single, planar conformation. The vibrational spectra are consistent with this single, stable structure. nih.gov

Computational Chemistry Approaches

Computational chemistry has emerged as a powerful tool for elucidating the intricate properties and reactivity of halogenated aromatic compounds. For this compound, computational methods provide deep insights into its electronic structure, reaction mechanisms, and spectroscopic characteristics, complementing and guiding experimental work.

Electronic Structure Calculations (e.g., Density Functional Theory)

Density Functional Theory (DFT) is a widely employed computational method for investigating the electronic structure of molecules like this compound. These calculations provide a theoretical framework for understanding the molecule's geometry, stability, and reactivity.

A common approach involves geometry optimization using a functional such as B3LYP combined with a basis set like 6-311++G(d,p). researchgate.netijastems.org This level of theory has been shown to provide optimized geometric bond lengths and bond angles that are in good agreement with experimental values for similar halogenated benzene derivatives. researchgate.netijastems.org The calculations would reveal the planarity of the benzene ring and the specific bond lengths and angles influenced by the electron-withdrawing fluorine and bromine substituents. For instance, deformations in the benzene ring, such as changes in CCC bond angles and CC bond lengths, can be precisely quantified. researchgate.net

Key electronic properties that can be determined from DFT calculations include the energies of the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO). The HOMO-LUMO energy gap is a critical parameter that reflects the chemical reactivity and kinetic stability of the molecule. irjweb.com A smaller gap generally indicates higher reactivity. For this compound, the HOMO is expected to be localized primarily on the benzene ring and the bromine atom, while the LUMO would be an anti-bonding orbital distributed over the aromatic system.

Table 1: Representative Calculated Electronic Properties of this compound (Illustrative)

PropertyDescriptionIllustrative Value
HOMO Energy Energy of the Highest Occupied Molecular Orbital.-6.5 eV
LUMO Energy Energy of the Lowest Unoccupied Molecular Orbital.-0.8 eV
HOMO-LUMO Gap The energy difference between the HOMO and LUMO.5.7 eV
Dipole Moment A measure of the molecule's overall polarity.1.5 D

Note: The values in this table are illustrative and would be obtained from specific DFT calculations (e.g., B3LYP/6-311++G(d,p)).

Reaction Mechanism Elucidation via Computational Modeling

Computational modeling is instrumental in elucidating the mechanisms of chemical reactions involving this compound. A key area of investigation is nucleophilic aromatic substitution (SNAr), where the bromine atom acts as a leaving group.

DFT calculations can be used to map the potential energy surface of a reaction, identifying reactants, products, intermediates, and transition states. researchgate.net For the SNAr reaction of this compound with a nucleophile, computational models can predict the regioselectivity by comparing the activation energies for substitution at different positions. The calculations would likely show that the electron-withdrawing fluorine atoms activate the benzene ring towards nucleophilic attack.

The mechanism can be investigated by locating the transition state structure for the rate-determining step. The geometry of the transition state provides crucial information about the bond-breaking and bond-forming processes. For some SNAr reactions, a stepwise mechanism involving a stable Meisenheimer complex (a σ-complex intermediate) is predicted, while for others, a concerted mechanism may be favored. researchgate.net Computational studies can distinguish between these pathways by calculating the energies of the intermediates and transition states. researchgate.net Intrinsic Reaction Coordinate (IRC) calculations can then be performed to confirm that the identified transition state connects the reactant and product states on the potential energy surface.

Table 2: Illustrative Calculated Energy Profile for a Hypothetical SNAr Reaction of this compound

SpeciesDescriptionRelative Energy (kcal/mol)
Reactants This compound + Nucleophile0.0
Transition State The highest energy point along the reaction coordinate.+15.2
Intermediate (σ-complex) A stable intermediate formed during the reaction.-5.8
Products The final substituted product + Leaving group-10.5

Note: This table presents hypothetical data to illustrate the type of information obtained from computational modeling of a reaction mechanism.

Prediction of Spectroscopic Parameters

Computational chemistry provides a powerful means to predict and interpret the spectroscopic data of this compound, including its NMR and vibrational (infrared and Raman) spectra.

NMR Spectroscopy: DFT calculations, often using the Gauge-Including Atomic Orbital (GIAO) method, can predict the nuclear magnetic shielding tensors, which are then converted into chemical shifts (δ). By comparing the calculated chemical shifts for ¹H, ¹³C, and ¹⁹F with experimental data, the accuracy of the computational model can be assessed and assignments of the spectral peaks can be confirmed. For complex spectra with overlapping signals, calculated chemical shifts can be invaluable for accurate interpretation. 52.86.42 Furthermore, spin-spin coupling constants (J-coupling) can also be calculated, providing further confirmation of the molecular structure. 52.86.42

Vibrational Spectroscopy: The vibrational frequencies and intensities for both infrared (IR) and Raman spectra can be calculated using DFT. researchgate.netijastems.org These calculations involve computing the second derivatives of the energy with respect to the atomic coordinates. The calculated harmonic frequencies are often systematically higher than the experimental frequencies due to the neglect of anharmonicity and basis set limitations. Therefore, they are typically scaled by an empirical factor to improve agreement with experimental data. amanote.com The calculated vibrational spectra can aid in the assignment of the observed absorption bands to specific vibrational modes of the molecule, such as C-H stretching, C-F stretching, and benzene ring deformations.

Table 3: Comparison of Experimental and Illustrative Calculated Spectroscopic Data for this compound

Spectroscopic ParameterExperimental ValueIllustrative Calculated Value (Method)
¹H NMR Chemical Shift (ppm) 7.1-7.37.25 (GIAO-DFT)
¹³C NMR Chemical Shift (ppm) 110-150112.5, 128.9, 145.3 (GIAO-DFT)
¹⁹F NMR Chemical Shift (ppm) -130 to -155-132.8, -148.1, -153.6 (GIAO-DFT)
Major IR Absorption (cm⁻¹) ~1500 (C=C stretch)~1510 (B3LYP/6-311++G(d,p), scaled)

Note: Experimental data is sourced from public databases like PubChem. nih.gov Calculated values are illustrative and depend on the specific computational methodology employed.

Applications in Advanced Organic Synthesis and Materials Science

Utilization as a Synthetic Building Block

As a chemical intermediate, 1-Bromo-2,3,4-trifluorobenzene is integral to the synthesis of various organic compounds, including those used in the pharmaceutical and agrochemical industries. lookchem.comcymitquimica.com Its structure allows for a range of chemical transformations, enabling the creation of diverse and complex molecules. lookchem.com

This compound is a crucial starting material for producing complex, highly fluorinated molecules. The presence of both bromine and fluorine atoms allows for selective chemical reactions. lookchem.com One of the most significant applications is in Suzuki-Miyaura cross-coupling reactions, a powerful method for creating carbon-carbon bonds to form biaryl structures. acs.orgresearchgate.net

Research has demonstrated its use in synthesizing polyfluorinated biphenyls, which are of interest for their electronic properties and potential applications in materials science. acs.org For instance, it has been used in palladium-catalyzed Suzuki-Miyaura coupling reactions with various fluorinated aryl boronic acids to produce these complex biphenyls. acs.orgresearchgate.net The electron-withdrawing nature of the fluorine atoms in the resulting compounds makes them valuable for applications like crystal engineering and as scaffolds for molecular recognition. acs.org

Table 1: Examples of Complex Molecules Synthesized from this compound

Starting MaterialReaction TypeProduct ClassPotential ApplicationReference
This compoundSuzuki-Miyaura CouplingPolyfluorinated BiphenylsOrganic Electronics, Crystal Engineering acs.org
1-Bromo-2,4,5-trifluorobenzene (B152817) (isomer)Grignard Reaction, OxidationFluorinated BenzophenonesFluorescent Probes, Photostable Dyes researchgate.net
1-Bromo-2,4,5-trifluorobenzene (isomer)Nucleophilic Aromatic SubstitutionFluorinated Xanthones, AcridonesFluorescent Materials researchgate.net

Note: While some examples use the isomer 1-Bromo-2,4,5-trifluorobenzene, the synthetic principles are highly relevant and demonstrate the utility of trifluorobromobenzene scaffolds.

This compound serves as a critical building block in medicinal chemistry for the synthesis of active pharmaceutical ingredients (APIs). innospk.com The inclusion of the trifluorinated phenyl motif can significantly influence a molecule's biological activity, metabolic stability, and ability to permeate cell membranes. datavagyanik.com

While the isomer 1-bromo-2,4,5-trifluorobenzene is widely cited as an important intermediate for broad-spectrum quinolone antibacterials, this compound has been specifically mentioned in the context of synthesizing novel 5-amino-6-methylquinolone carboxylic acids, which represent a new class of non-6-fluoroquinolones. lookchem.comlookchem.comgoogle.com Quinolones are a major class of synthetic antibiotics used in human and veterinary medicine. mdpi.com

The versatility of trifluorobromobenzenes extends to other therapeutic areas. lookchem.com For example, the isomer 1-bromo-2,4,5-trifluorobenzene is used to create fluorinated precursors for fluorescent molecules like fluorescein (B123965) and rhodamine analogues. researchgate.net These fluorescent compounds have potential applications in diagnostics and as biological probes. The synthesis involves creating a Grignard reagent from the brominated compound, followed by reaction with a suitable aldehyde and subsequent oxidation. researchgate.net The resulting fluorinated molecules often exhibit enhanced photostability. researchgate.net

This compound and its isomers are valuable intermediates in the agrochemical industry. cymitquimica.comdatainsightsmarket.com They are used in the synthesis of modern, high-performance herbicides, fungicides, and insecticides. datavagyanik.comsmolecule.com The incorporation of fluorine atoms into agrochemical molecules can lead to enhanced efficacy, greater selectivity, and improved environmental profiles by allowing for lower application rates. datavagyanik.com

Synthesis of Biologically Active Scaffolds in Pharmaceutical Chemistry

Role in Functional Materials Development

The unique electronic properties imparted by the fluorine atoms make this compound and its isomers useful in the field of materials science. chemimpex.com These compounds are precursors for high-performance polymers, specialty coatings, and electronic materials. datavagyanik.comchemimpex.com

Fluorinated compounds are particularly important in the development of liquid crystals for display technologies and organic light-emitting diodes (OLEDs). datavagyanik.comlookchem.com The synthesis of fluorinated liquid crystals often involves using bromofluorobenzene derivatives as starting materials. researchgate.net Additionally, fluorinated polymers derived from these intermediates can exhibit excellent thermal stability and chemical resistance, making them suitable for applications in the aerospace and electronics industries. datavagyanik.comchemimpex.com For example, they can be used as dielectric layers in microelectronics. datavagyanik.com

Synthesis of Fluorinated Polymers

This compound is a precursor for developing high-performance fluorinated polymers. The presence of the trifluorinated phenyl ring can impart desirable characteristics to the resulting polymer, such as high thermal stability, chemical resistance, and specific dielectric properties. The bromo-substituent provides a reactive handle for polymerization reactions, allowing it to be incorporated into polymer backbones or side chains.

The bromine atom can be utilized in various coupling reactions or converted into other functional groups, such as a Grignard reagent, to facilitate polymerization. This reactivity makes it a building block for specialized polymers like poly(arylene ether)s. researchgate.netbwise.kr Poly(arylene ether)s are a class of engineering thermoplastics known for their high glass transition temperatures, excellent mechanical strength, and resistance to oxidation and hydrolysis. researchgate.net The inclusion of the trifluorophenyl moiety from this compound can enhance these properties and also lower the material's dielectric constant, which is advantageous for applications in microelectronics. mdpi.com

While direct polymerization of this compound is not commonly documented, its role as a monomer can be inferred from the chemistry of similar fluorinated aromatic compounds. For instance, the bromo group in related molecules serves as a site for creating functional polymers with tailored properties. smolecule.com The synthesis of fluorinated poly(arylene ether)s often involves the nucleophilic aromatic substitution reaction between a bisphenol and a highly activated fluoroaromatic compound, such as decafluorobiphenyl. bwise.krmdpi.com this compound can be functionalized to create novel monomers for such polycondensation reactions.

Potential Polymer ClassRole of this compoundKey Synthetic TransformationResulting Polymer Properties
Poly(arylene ether)sMonomer precursorConversion of the bromo-group to a phenol, followed by nucleophilic aromatic polycondensation.High thermal stability, chemical resistance, low dielectric constant. researchgate.netmdpi.com
Functional Polymers via Cross-CouplingMonomerSuzuki or Stille coupling of the bromo-group with a di-boronic acid or di-stannane co-monomer.Conjugated polymers with specific optoelectronic properties.
Pendant-Modified PolymersFunctionalizing agentGrafting onto a polymer backbone via the bromo-group.Modified surface properties, hydrophobicity, and thermal stability. smolecule.com

Precursors for Liquid Crystalline Materials

The unique electronic and steric properties of the 2,3,4-trifluorophenyl unit make this compound a key intermediate in the synthesis of liquid crystalline materials. The introduction of fluorine atoms into the aromatic core of a molecule can significantly influence its mesomorphic behavior, including transition temperatures and the stability of liquid crystal phases. smolecule.com

Detailed research has shown the synthesis of novel banana-shaped liquid crystals that incorporate a 1,5-disubstituted 2,3,4-trifluorophenyl moiety. psu.edu These bent-core liquid crystals are of significant interest due to their potential to form ferroelectric phases from achiral molecules. The synthetic strategy for these materials often involves the sequential functionalization of 1,2,3-trifluorobenzene (B74907). psu.edu this compound serves as a more direct precursor, with the bromine atom providing a specific site for molecular elaboration through cross-coupling reactions, such as the Suzuki coupling, which are invaluable in liquid crystal synthesis. psu.edu The high lateral polarity generated by the three adjacent fluorine atoms is a crucial factor in the design of these advanced materials. psu.edu

The bromo-group can be converted into a boronic acid or used directly in coupling reactions with other aromatic fragments to construct the complex, anisotropic molecules required for liquid crystallinity. psu.edu This allows for the precise assembly of calamitic (rod-shaped) or discotic (disc-shaped) mesogens where the trifluorophenyl unit is a core structural element.

Liquid Crystal TypeRole of this compoundKey Synthetic ReactionSignificance of Trifluorophenyl Unit
Banana-Shaped (Bent-Core)Core structural precursorSuzuki coupling reactions to build the bent molecular architecture. psu.eduGenerates high lateral polarity and promotes the formation of novel mesophases. psu.edu
Calamitic (Rod-Shaped)Terminal or central building blockConversion to boronic acid followed by coupling, or direct coupling. psu.eduInfluences transition temperatures and dielectric anisotropy. smolecule.com

Synthesis of Fluorinated Fluorophores

Fluorination is a powerful strategy in the design of advanced fluorescent dyes (fluorophores), as it can significantly enhance photostability, improve quantum yields, and tune absorption and emission wavelengths. nih.govresearchgate.net While the literature extensively documents the use of its isomer, 1-bromo-2,4,5-trifluorobenzene, in the synthesis of fluorinated xanthones, acridones, and rhodamine analogues, the underlying synthetic principles are applicable to this compound. nih.govresearchgate.netacs.orgnih.gov

The general approach involves using the bromo-substituent as a synthetic handle. nih.gov For example, a Grignard reagent can be formed from the bromo-compound, which then acts as a nucleophile in reactions with aldehydes or esters to construct the core of the fluorophore. nih.govresearchgate.net This is followed by oxidation and cyclization steps, often involving nucleophilic aromatic substitution (SNAr) of the fluorine atoms, to yield the final heterocyclic dye system. nih.govwalisongo.ac.idnih.gov

Using this compound instead of its more common isomer would lead to a different substitution pattern on the resulting fluorophore. This structural change would alter the electronic distribution within the molecule, likely resulting in novel photophysical properties, such as shifted absorption and emission maxima. This provides a pathway to new classes of fluorinated fluorophores with potentially unique applications in bioimaging, sensing, and materials science. For example, the synthesis of fluorinated acridones has been achieved through an iterative SNAr reaction sequence on a fluorinated benzophenone (B1666685) precursor, a strategy adaptable for derivatives of this compound. walisongo.ac.idnih.gov

Potential Fluorophore ClassSynthetic Role of this compoundKey Synthetic StepsAnticipated Effect of Fluorine Atoms
XanthonesPrecursor for fluorinated benzophenone intermediateGrignard formation, addition to an aldehyde, oxidation, and intramolecular SNAr cyclization. nih.govnih.govEnhanced photostability and tuned emission spectra. researchgate.net
AcridonesPrecursor for fluorinated benzophenone intermediateGrignard formation, addition, oxidation, and iterative SNAr with an amine nucleophile. walisongo.ac.idnih.govModulation of spectroscopic properties and fluorescence in acidic environments. nih.gov
Rhodamines/FluoresceinsPrecursor for building blocks like fluorinated xanthonesMulti-step synthesis involving the creation of a xanthone (B1684191) core followed by further functionalization. researchgate.netImproved brightness and resistance to photobleaching. researchgate.net

Derivatization and Regioselective Functionalization Strategies

Site-Specific Modification of the Aromatic Ring

Regioselective functionalization of the 1-bromo-2,3,4-trifluorobenzene ring is primarily achieved through two main pathways: directed ortho-metalation (DoM) which targets a C-H bond, and halogen-metal exchange which targets the C-Br bond. The choice of reagents and reaction conditions dictates which site is modified.

Directed ortho-Metalation (DoM)

The fluorine atoms on the benzene (B151609) ring act as moderate directing groups in metalation reactions, increasing the kinetic acidity of adjacent protons. organic-chemistry.org In this compound, the C-H proton at the C5 position is flanked by two fluorine atoms (at C4 and C6, if numbered sequentially from the bromo-substituted carbon), making it the most acidic proton on the ring. Consequently, treatment with strong, non-nucleophilic bases like lithium diisopropylamide (LDA) or lithium 2,2,6,6-tetramethylpiperidide (LiTMP) results in regioselective deprotonation at this C5 position. researchgate.netpsu.edu The resulting aryllithium intermediate is a versatile nucleophile that can be trapped with various electrophiles, leading to the formation of 1-bromo-5-substituted-2,3,4-trifluorobenzene derivatives. This strategy provides a reliable method for introducing a functional group specifically at the C5 position while leaving the bromine atom intact for subsequent transformations. Studies on similarly substituted fluoroarenes confirm that lithiation occurs selectively at the most acidic site, which is typically a proton positioned between two fluorine atoms. psu.edu

Halogen-Metal Exchange

An alternative site-specific modification involves the carbon-bromine bond. The C-Br bond is susceptible to halogen-metal exchange, a characteristic reaction of polar organometallic chemistry. researchgate.net Reacting this compound with organolithium reagents such as n-butyllithium (n-BuLi) at low temperatures, or through the formation of a Grignard reagent using magnesium metal (Mg), selectively replaces the bromine atom with a metal (Li or MgBr). thieme-connect.deresearchgate.netalfredstate.edu This generates a 2,3,4-trifluorophenyl organometallic species, functionalized specifically at the C1 position. This intermediate can then be used in reactions with a wide array of electrophiles. This method is complementary to DoM, allowing for targeted functionalization at the carbon atom that originally bore the bromine substituent.

The table below summarizes the primary methods for site-specific modification of the aromatic ring.

Strategy Target Site Typical Reagents Intermediate Formed Reference
Directed ortho-Metalation (DoM)C5-HLDA, LiTMP, s-BuLi/TMEDA1-Bromo-2,3,4-trifluoro-5-lithiobenzene organic-chemistry.orgresearchgate.netpsu.edu
Halogen-Metal ExchangeC1-Brn-BuLi, t-BuLi2,3,4-Trifluorophenyllithium thieme-connect.de
Grignard FormationC1-BrMg, i-PrMgCl·LiCl2,3,4-Trifluorophenylmagnesium bromide researchgate.netalfredstate.edu

Strategies for Introducing Diverse Functional Groups

The site-specific intermediates generated via metalation, along with the inherent reactivity of the C-Br bond in cross-coupling reactions, enable the introduction of a wide variety of functional groups onto the this compound scaffold.

Functionalization via Organometallic Intermediates

The aryllithium and Grignard reagents formed as described in section 6.1 are powerful nucleophiles. Their reaction with different electrophiles provides a pathway to numerous derivatives. For instance, quenching the C5-lithiated intermediate or the C1-Grignard reagent with carbon dioxide (CO₂) yields the corresponding carboxylic acids. researchgate.net Reaction with aldehydes or ketones produces secondary or tertiary alcohols, respectively, while reaction with N,N-dimethylformamide (DMF) introduces an aldehyde group. researchgate.net Furthermore, reaction with borates, such as triisobutyl borate, yields boronic acids or their esters, which are valuable substrates for subsequent Suzuki-Miyaura cross-coupling reactions. researchgate.netacs.org

Transition-Metal-Catalyzed Cross-Coupling Reactions

The carbon-bromine bond in this compound is an ideal handle for transition-metal-catalyzed cross-coupling reactions. These reactions are highly efficient for forming new carbon-carbon and carbon-heteroatom bonds.

The Suzuki-Miyaura coupling is a particularly versatile method for this purpose. Polyfluorinated bromoarenes have been demonstrated to be effective electrophiles in palladium-catalyzed Suzuki-Miyaura reactions. researchgate.net In a specific application, this compound was successfully coupled with 5,5-dimethyl-2-(2,4,5-trifluorophenyl)-1,3,2-dioxaborinane using a palladium catalyst and a RuPhos phosphine (B1218219) ligand, affording the corresponding polyfluorinated biphenyl (B1667301) product in good yield. acs.org This highlights the robustness of the Suzuki-Miyaura coupling even with electron-poor aromatic systems. acs.org

Other cross-coupling reactions, such as the Heck, Sonogashira, and Buchwald-Hartwig amination, are also applicable, using the C-Br bond as the reactive site to introduce alkenyl, alkynyl, and amino groups, respectively.

Nucleophilic Aromatic Substitution (SNAr)

The electron-withdrawing nature of the three fluorine atoms makes the aromatic ring of this compound electron-deficient and thus susceptible to nucleophilic aromatic substitution (SNAr). masterorganicchemistry.commasterorganicchemistry.com While the bromine atom can serve as a leaving group, the fluorine atoms, particularly the one at the C4 position (para to the bromine), are also activated for displacement by strong nucleophiles like alkoxides, thiolates, or amines. This provides a complementary method for introducing heteroatom-based functional groups, with the regioselectivity being governed by the position of the most activated fluorine atom.

The following table details key research findings on the derivatization of this compound and related compounds.

Reaction Type Substrate Reagents/Catalyst Functional Group Introduced Product Yield Reference
Suzuki-Miyaura CouplingThis compound5,5-Dimethyl-2-(2,4,5-trifluorophenyl)-1,3,2-dioxaborinane, Pd catalyst, RuPhos ligandAryl2,3,4,2',4',5'-Hexafluorobiphenyl77% acs.org
ortho-Lithiation / Bromination1,2,3-Trifluorobenzene (B74907)s-BuLi, TMEDA; then Br₂BromoThis compound- thieme-connect.de
Grignard / Carboxylation1-Bromo-2,4,5-trifluorobenzene (B152817)EtMgBr; then CO₂Carboxyl2,4,5-Trifluorobenzoic acid- researchgate.net
Lithiation / Hydroxyalkylation1-Bromo-2,4-difluorobenzeneLDA; then Acetone2-Hydroxyprop-2-yl2-(3-Bromo-2,6-difluorophenyl)propan-2-ol50% psu.edu

Environmental Research and Degradation Pathways

Abiotic Transformation Mechanisms

Abiotic degradation involves the transformation of a chemical substance through non-biological processes, primarily driven by physical and chemical factors in the environment.

Photochemical Degradation Studies

Chemical Hydrolysis and Oxidation Processes

Information on the chemical hydrolysis and oxidation of 1-Bromo-2,3,4-trifluorobenzene is also limited. Hydrolysis, the reaction with water, is generally not a significant degradation pathway for aromatic halides under typical environmental pH conditions unless activated by other functional groups.

Biotic Degradation Pathways

Biotic degradation, or biodegradation, involves the breakdown of organic compounds by microorganisms. This is a crucial process for the removal of many environmental pollutants.

Microbial Metabolism in Aerobic and Anaerobic Conditions

Direct studies on the microbial metabolism of this compound under either aerobic or anaerobic conditions have not been identified in the available literature. However, general principles of the biodegradation of halogenated aromatics can provide some insight.

Under aerobic conditions , bacteria often utilize dioxygenase enzymes to initiate the breakdown of aromatic rings. For some chlorinated and brominated benzenes, this leads to the formation of halogenated catechols, which are then further metabolized. nih.gov The presence of multiple halogen substituents can sometimes hinder this process.

Under anaerobic conditions , a common degradation mechanism is reductive dehalogenation, where a halogen atom is removed and replaced by a hydrogen atom. This process is particularly important for highly halogenated compounds. For instance, some microbial communities have been shown to reductively dehalogenate chlorinated benzenes. scholaris.ca It is plausible that this compound could undergo anaerobic reductive debromination. The fate of the resulting trifluorobenzene would then depend on the metabolic capabilities of the microbial community present. The degradation of fluorinated aromatic compounds is generally considered more challenging for microorganisms due to the strength of the carbon-fluorine bond. ethz.ch

Comparative Studies with Chlorinated Analogues

While direct comparative studies involving this compound are lacking, research on other halogenated benzenes provides a basis for comparison. Generally, the carbon-bromine bond is weaker than the carbon-chlorine bond, which in turn is weaker than the carbon-fluorine bond. This suggests that, in processes like reductive dehalogenation, debromination would be more favorable than dechlorination or defluorination.

Studies on mixed microbial cultures have demonstrated the complete biotransformation of compounds like lindane (hexachlorocyclohexane) to non-toxic end products, showcasing the potential of microbial consortia in degrading complex halogenated molecules. scholaris.ca The degradation of mixtures of substituted benzenes has also been observed, indicating that some microbial strains possess versatile enzymatic machinery. nih.gov However, the specific capabilities of microorganisms to degrade a mixed bromo-fluoro substituted benzene (B151609) like this compound have yet to be determined.

Environmental Persistence and Transport Implications

Due to the lack of specific degradation data, the environmental persistence of this compound can only be estimated. The strong carbon-fluorine bonds suggest that the trifluorobenzene moiety is likely to be persistent. ethz.ch Brominated aromatic compounds, in general, are known for their chemical inertness and hydrophobicity, which can lead to their accumulation in terrestrial and aquatic organisms. scirp.org

Persistent organic pollutants (POPs) are characterized by their long half-lives in the environment and their potential for long-range transport. epa.gov Brominated and fluorinated compounds share many physical and chemical properties with their chlorinated counterparts, which are known POPs. mst.dk This suggests that this compound could also exhibit persistence and the potential for bioaccumulation. Novel brominated flame retardants, for example, have been found to be widely distributed in the environment and in biota. nih.govresearchgate.net Without experimental data on its degradation rates and partitioning behavior, the classification of this compound as a POP remains speculative but a valid concern requiring further investigation.

Q & A

Q. What are the critical safety protocols for handling 1-bromo-2,3,4-trifluorobenzene in laboratory settings?

  • Methodological Answer : Due to its hazards (H315: skin irritation, H319: eye irritation, H335: respiratory irritation), always use personal protective equipment (PPE) including nitrile gloves, safety goggles, and a lab coat. Work in a fume hood to minimize inhalation risks. Store the compound in a cool, dry place away from oxidizing agents and heat sources. Spills should be neutralized with inert adsorbents and disposed of as hazardous waste. Validate safety protocols with institutional guidelines and refer to Safety Data Sheets (SDS) for emergency measures .

Q. What are the optimal conditions for purifying this compound?

  • Methodological Answer : High-purity (>99%) samples can be obtained via fractional distillation under reduced pressure (boiling point: 47–49°C at 60 mmHg). Confirm purity using gas chromatography (GC) or HPLC. For crystalline derivatives, recrystallization in non-polar solvents (e.g., hexane) may be effective. Monitor for decomposition by tracking density (1.777 g/cm³) and refractive index (1.4860) .

Q. How can the compound be characterized spectroscopically?

  • Methodical Answer : Use 19F^{19}\text{F} NMR to resolve fluorine environments (three distinct signals for F-2, F-3, and F-4). 1H^{1}\text{H} NMR will show aromatic protons as a singlet or multiplet depending on coupling with fluorine. Mass spectrometry (EI-MS) should display a molecular ion peak at m/z 210.98 (M+^+). IR spectroscopy can confirm the absence of C-Br bond cleavage (C-Br stretch ~550–600 cm⁻¹) .

Advanced Research Questions

Q. How do the electron-withdrawing effects of fluorine and bromine influence regioselectivity in cross-coupling reactions?

  • Methodological Answer : The bromine atom acts as a leaving group in Suzuki-Miyaura or Ullmann couplings, while fluorine substituents direct electrophilic aromatic substitution (EAS) via meta-directing effects. Computational studies (DFT) suggest that the electron-deficient aromatic ring favors oxidative addition at the bromine site. For example, coupling with aryl boronic acids proceeds efficiently under Pd(PPh3_3)4_4 catalysis in THF/Na2_2CO3_3 at 80°C. Monitor regioselectivity using 13C^{13}\text{C} NMR or X-ray crystallography of products .

Q. What strategies mitigate competing side reactions during halogen-lithium exchange?

  • Methodological Answer : At low temperatures (–78°C), treat this compound with n-BuLi in anhydrous THF to generate the lithium intermediate. Quench with electrophiles (e.g., DMF for formylation or CO2_2 for carboxylation). Competing dehalogenation can be suppressed by using sterically hindered bases (e.g., LDA) and avoiding protic solvents. Validate intermediates via in situ 19F^{19}\text{F} NMR .

Q. How does the compound serve as a precursor for fluorinated liquid crystals or pharmaceuticals?

  • Methodological Answer : Its trifluorinated aromatic core is a key synthon for bioactive molecules. For example, coupling with ethynyltrimethylsilane (via Sonogashira reaction) yields alkynylated derivatives used in kinase inhibitors. Optimize reaction yields by controlling stoichiometry (1:1.2 molar ratio of bromoarene to alkyne) and using CuI/Pd(PPh3_3)2_2Cl2_2 catalysts. Characterize products via DSC (for liquid crystals) or bioactivity assays (for pharmaceuticals) .

Data Contradictions and Validation

  • Purity Discrepancies : lists purity as 99%, while commercial sources (excluded per guidelines) may report lower grades. Validate purity via independent GC-MS or elemental analysis.
  • Safety Warnings : and emphasize strict handling protocols, while some suppliers (e.g., ChemScene) note incomplete medical validation. Prioritize institutional safety reviews over vendor recommendations.

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
1-Bromo-2,3,4-trifluorobenzene
Reactant of Route 2
1-Bromo-2,3,4-trifluorobenzene

Descargo de responsabilidad e información sobre productos de investigación in vitro

Tenga en cuenta que todos los artículos e información de productos presentados en BenchChem están destinados únicamente con fines informativos. Los productos disponibles para la compra en BenchChem están diseñados específicamente para estudios in vitro, que se realizan fuera de organismos vivos. Los estudios in vitro, derivados del término latino "in vidrio", involucran experimentos realizados en entornos de laboratorio controlados utilizando células o tejidos. Es importante tener en cuenta que estos productos no se clasifican como medicamentos y no han recibido la aprobación de la FDA para la prevención, tratamiento o cura de ninguna condición médica, dolencia o enfermedad. Debemos enfatizar que cualquier forma de introducción corporal de estos productos en humanos o animales está estrictamente prohibida por ley. Es esencial adherirse a estas pautas para garantizar el cumplimiento de los estándares legales y éticos en la investigación y experimentación.