molecular formula CH5ClN2O B1581123 Urea hydrochloride CAS No. 506-89-8

Urea hydrochloride

Cat. No.: B1581123
CAS No.: 506-89-8
M. Wt: 96.52 g/mol
InChI Key: VYWQTJWGWLKBQA-UHFFFAOYSA-N
Attention: For research use only. Not for human or veterinary use.
In Stock
  • Click on QUICK INQUIRY to receive a quote from our team of experts.
  • With the quality product at a COMPETITIVE price, you can focus more on your research.

Description

Urea hydrochloride is a chemical compound formed by the combination of urea and hydrochloric acid. It is a white crystalline solid that is highly soluble in water. This compound is used in various industrial and scientific applications due to its unique chemical properties.

Scientific Research Applications

Chemistry: Urea hydrochloride is used as a reagent in organic synthesis, particularly in the preparation of urea derivatives. It is also employed in the study of reaction mechanisms and kinetics.

Biology: In biological research, this compound is used to denature proteins and nucleic acids, facilitating their study and analysis. It is also used in the preparation of buffer solutions.

Medicine: this compound has applications in the pharmaceutical industry, where it is used in the formulation of certain medications. It is also used in dermatological treatments for its keratolytic properties.

Industry: In industrial applications, this compound is used in the production of resins, plastics, and adhesives. It is also employed in the textile industry for dyeing and finishing processes.

Mechanism of Action

Urea normalizes serum sodium levels by inducing osmotic excretion of free water . It also ameliorates hyponatremia in the syndrome of inappropriate antidiuretic hormone secretion by a more specific effect, diminishing the natriuresis in association with increased medullary urea content .

Future Directions

The preparation of ammonium chloride by reacting urea with HCl to produce urea hydrochloride takes a significant amount of time to get ammonium chloride depending on ratios. Research is being conducted to determine if heat can increase the process .

Preparation Methods

Synthetic Routes and Reaction Conditions: Urea hydrochloride can be synthesized by reacting urea with hydrochloric acid. The reaction is typically carried out in an aqueous solution, where urea is dissolved in water and hydrochloric acid is added gradually. The reaction proceeds as follows:

CO(NH2)2+HClCO(NH2)2HCl\text{CO(NH}_2\text{)}_2 + \text{HCl} \rightarrow \text{CO(NH}_2\text{)}_2\text{HCl} CO(NH2​)2​+HCl→CO(NH2​)2​HCl

Industrial Production Methods: In industrial settings, this compound is produced by mixing urea and hydrochloric acid in large reactors. The reaction is controlled to ensure complete conversion of urea to this compound. The product is then crystallized, filtered, and dried to obtain the final product.

Types of Reactions:

    Hydrolysis: this compound undergoes hydrolysis in the presence of water, leading to the formation of ammonia and carbon dioxide.

    Decomposition: Upon heating, this compound decomposes to release ammonia and hydrochloric acid.

    Substitution: this compound can participate in substitution reactions with various organic compounds, forming substituted urea derivatives.

Common Reagents and Conditions:

    Hydrolysis: Water is the primary reagent, and the reaction is typically carried out at room temperature.

    Decomposition: Heating is required, usually at temperatures above 100°C.

    Substitution: Organic reagents such as amines or alcohols are used, often in the presence of a catalyst.

Major Products Formed:

    Hydrolysis: Ammonia and carbon dioxide.

    Decomposition: Ammonia and hydrochloric acid.

    Substitution: Substituted urea derivatives.

Comparison with Similar Compounds

    Urea: Urea is a simpler compound with the formula CO(NH₂)₂. It is widely used as a fertilizer and in the chemical industry.

    Thiourea: Thiourea is similar to urea but contains sulfur instead of oxygen. It is used in photography, gold extraction, and as a reagent in organic synthesis.

    Hydroxyurea: Hydroxyurea is a derivative of urea with a hydroxyl group. It is used as a medication for certain cancers and sickle cell disease.

Uniqueness of Urea Hydrochloride: this compound is unique due to its combination of urea and hydrochloric acid, which imparts distinct chemical properties. Its ability to act as both a denaturant and a reactant makes it versatile in various scientific and industrial applications.

Properties

IUPAC Name

urea;hydrochloride
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/CH4N2O.ClH/c2-1(3)4;/h(H4,2,3,4);1H
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

VYWQTJWGWLKBQA-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

C(=O)(N)N.Cl
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

CH5ClN2O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID6060139
Record name Urea hydrochloride
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID6060139
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

96.52 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Liquid; Water or Solvent Wet Solid, White to slightly yellow deliquescent solid; [Merck Index] Yellowish-white odorless powder; [Redox Pty MSDS]
Record name Urea, hydrochloride (1:1)
Source EPA Chemicals under the TSCA
URL https://www.epa.gov/chemicals-under-tsca
Description EPA Chemicals under the Toxic Substances Control Act (TSCA) collection contains information on chemicals and their regulations under TSCA, including non-confidential content from the TSCA Chemical Substance Inventory and Chemical Data Reporting.
Record name Urea hydrochloride
Source Haz-Map, Information on Hazardous Chemicals and Occupational Diseases
URL https://haz-map.com/Agents/18581
Description Haz-Map® is an occupational health database designed for health and safety professionals and for consumers seeking information about the adverse effects of workplace exposures to chemical and biological agents.
Explanation Copyright (c) 2022 Haz-Map(R). All rights reserved. Unless otherwise indicated, all materials from Haz-Map are copyrighted by Haz-Map(R). No part of these materials, either text or image may be used for any purpose other than for personal use. Therefore, reproduction, modification, storage in a retrieval system or retransmission, in any form or by any means, electronic, mechanical or otherwise, for reasons other than personal use, is strictly prohibited without prior written permission.

CAS No.

506-89-8
Record name Urea hydrochloride
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=506-89-8
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Urea hydrochloride
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0000506898
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Urea, hydrochloride (1:1)
Source EPA Chemicals under the TSCA
URL https://www.epa.gov/chemicals-under-tsca
Description EPA Chemicals under the Toxic Substances Control Act (TSCA) collection contains information on chemicals and their regulations under TSCA, including non-confidential content from the TSCA Chemical Substance Inventory and Chemical Data Reporting.
Record name Urea hydrochloride
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID6060139
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Urea hydrochloride
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.007.327
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name UREA HYDROCHLORIDE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/RCE1061F6A
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Urea hydrochloride
Reactant of Route 2
Urea hydrochloride
Reactant of Route 3
Urea hydrochloride
Reactant of Route 4
Urea hydrochloride
Reactant of Route 5
Urea hydrochloride
Reactant of Route 6
Urea hydrochloride

Disclaimer and Information on In-Vitro Research Products

Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.