molecular formula C8H16O2 B1589598 (113C)octanoic acid CAS No. 59669-16-8

(113C)octanoic acid

Cat. No.: B1589598
CAS No.: 59669-16-8
M. Wt: 145.20 g/mol
InChI Key: WWZKQHOCKIZLMA-VJJZLTLGSA-N
Attention: For research use only. Not for human or veterinary use.
In Stock
  • Click on QUICK INQUIRY to receive a quote from our team of experts.
  • With the quality product at a COMPETITIVE price, you can focus more on your research.

Description

(113C)octanoic acid: , also known as caprylic acid 1-C-13, is a labeled isotopic analogue of octanoic acid. It is a saturated fatty acid with the molecular formula CH3(CH2)6^13COOH. This compound is characterized by the presence of a carbon-13 isotope at the first carbon position. Octanoic acid is naturally found in the milk of various mammals and in some plant oils. It is widely used in dietary and medical research, particularly in studies related to metabolism and lipidomics .

Scientific Research Applications

Chemistry: (113C)octanoic acid is used in studies related to lipid metabolism and lipidomics. It serves as a tracer in metabolic studies to understand the pathways and mechanisms involved in fatty acid metabolism .

Biology: In biological research, octanoic acid 1-C-13 is used to study the dehydrogenase of medium-chain acyl-CoA using resonance Raman spectroscopy. It helps in understanding the enzymatic processes involved in fatty acid metabolism .

Medicine: this compound is employed in dietary research to investigate its effects on weight loss and exercise performance. It is also used in studies related to epilepsy, where it helps induce ketosis to reduce the frequency and severity of seizures .

Industry: In the industrial sector, octanoic acid 1-C-13 is used in the production of esters for perfumes and dyes. It is also an intermediate in the synthesis of chlorinated octanoic acids, which are used in the production of polyvinyl chloride heat stabilizers .

Mechanism of Action

Target of Action

Octanoic acid-1-13C, also known as Octanoic acid-13C or Octanoic acid 1-C-13, is primarily targeted at the dehydrogenase of medium-chain acyl-CoA . This enzyme plays a crucial role in the metabolism of fatty acids, particularly in the process of beta-oxidation where it catalyzes the oxidation of acyl-CoA derivatives.

Mode of Action

The interaction of Octanoic acid-1-13C with its target, the dehydrogenase of medium-chain acyl-CoA, results in the oxidation of the acyl-CoA derivatives . This process is essential for the breakdown of fatty acids, allowing for the release of energy stored within these molecules.

Biochemical Pathways

Octanoic acid-1-13C affects the biochemical pathway of fatty acid metabolism, specifically the process of beta-oxidation . As a result of its interaction with medium-chain acyl-CoA dehydrogenase, the downstream effects include the production of acetyl-CoA, which can then enter the citric acid cycle for further energy production .

Pharmacokinetics

It is known that octanoic acid-1-13c is rapidly absorbed in the duodenum and metabolized in the liver . These properties impact the bioavailability of the compound, influencing its effectiveness in the body.

Result of Action

The molecular and cellular effects of Octanoic acid-1-13C’s action primarily involve the release of energy through the oxidation of acyl-CoA derivatives . This process contributes to the overall energy metabolism within the body, particularly in tissues with high energy demands.

Action Environment

Environmental factors can influence the action, efficacy, and stability of Octanoic acid-1-13C. For instance, the presence of other fatty acids and the overall nutritional status of the individual can impact the metabolism of Octanoic acid-1-13C . Additionally, factors such as pH and temperature can affect the stability and activity of the compound.

Biochemical Analysis

Biochemical Properties

Octanoic acid 1-C-13 plays a significant role in various biochemical reactions. It is rapidly absorbed in the duodenum and metabolized in the liver. During metabolism, octanoic acid 1-C-13 undergoes β-oxidation, resulting in the production of acetyl-CoA, which enters the citric acid cycle. This process involves several enzymes, including acyl-CoA dehydrogenase, enoyl-CoA hydratase, and β-hydroxyacyl-CoA dehydrogenase. These enzymes facilitate the breakdown of octanoic acid 1-C-13 into smaller molecules that can be utilized for energy production .

Cellular Effects

Octanoic acid 1-C-13 influences various cellular processes. It has been shown to affect cell signaling pathways, gene expression, and cellular metabolism. For instance, octanoic acid 1-C-13 can activate peroxisome proliferator-activated receptors (PPARs), which play a crucial role in regulating lipid metabolism and inflammation. Additionally, octanoic acid 1-C-13 has been observed to modulate the expression of genes involved in fatty acid oxidation and energy homeostasis .

Molecular Mechanism

The molecular mechanism of octanoic acid 1-C-13 involves its interaction with specific biomolecules. It binds to and activates PPARs, leading to the transcription of target genes involved in lipid metabolism. Furthermore, octanoic acid 1-C-13 can inhibit the activity of enzymes such as acetyl-CoA carboxylase, which is involved in fatty acid synthesis. This inhibition results in a decrease in fatty acid production and an increase in fatty acid oxidation .

Temporal Effects in Laboratory Settings

In laboratory settings, the effects of octanoic acid 1-C-13 can change over time. The compound is relatively stable, but it can undergo degradation under certain conditions. Long-term studies have shown that octanoic acid 1-C-13 can have sustained effects on cellular function, including prolonged activation of PPARs and continued modulation of gene expression. These effects are observed in both in vitro and in vivo studies .

Dosage Effects in Animal Models

The effects of octanoic acid 1-C-13 vary with different dosages in animal models. At low doses, it has been shown to enhance fatty acid oxidation and improve energy metabolism. At high doses, octanoic acid 1-C-13 can have toxic effects, including liver damage and disruption of lipid homeostasis. These threshold effects highlight the importance of careful dosage regulation in experimental studies .

Metabolic Pathways

Octanoic acid 1-C-13 is involved in several metabolic pathways. It is primarily metabolized through β-oxidation, resulting in the production of acetyl-CoA. This process involves enzymes such as acyl-CoA dehydrogenase, enoyl-CoA hydratase, and β-hydroxyacyl-CoA dehydrogenase. Additionally, octanoic acid 1-C-13 can influence metabolic flux and metabolite levels by modulating the activity of key enzymes involved in lipid metabolism .

Transport and Distribution

Within cells and tissues, octanoic acid 1-C-13 is transported and distributed through specific transporters and binding proteins. It can be taken up by cells via fatty acid transport proteins and then transported to various cellular compartments. The localization and accumulation of octanoic acid 1-C-13 can affect its activity and function, influencing cellular processes such as energy production and lipid metabolism .

Subcellular Localization

The subcellular localization of octanoic acid 1-C-13 is crucial for its activity and function. It can be directed to specific compartments or organelles through targeting signals and post-translational modifications. For example, octanoic acid 1-C-13 can be localized to mitochondria, where it undergoes β-oxidation to produce energy. This localization is essential for its role in cellular metabolism and energy homeostasis .

Preparation Methods

Synthetic Routes and Reaction Conditions: The synthesis of octanoic acid 1-C-13 typically involves the incorporation of the carbon-13 isotope into the octanoic acid molecule. One common method is the oxidation of the corresponding alkene or organometallic compounds using a suitable oxidizing agent. The process involves oxidative cleavage of the molecule, resulting in the formation of octanoic acid with the carbon-13 isotope at the desired position .

Industrial Production Methods: Industrial production of octanoic acid 1-C-13 often involves the extraction of octanoic acid from plant and animal fats and oils, followed by isotopic labeling. The labeled compound is then purified to achieve the desired isotopic purity and chemical purity .

Chemical Reactions Analysis

Types of Reactions: (113C)octanoic acid undergoes various chemical reactions, including:

Common Reagents and Conditions:

Major Products:

Comparison with Similar Compounds

Uniqueness: (113C)octanoic acid is unique due to its isotopic labeling, which allows for precise tracking and analysis in metabolic studies. Its medium-chain length makes it an ideal candidate for studying fatty acid metabolism compared to shorter or longer chain fatty acids .

Properties

IUPAC Name

(113C)octanoic acid
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C8H16O2/c1-2-3-4-5-6-7-8(9)10/h2-7H2,1H3,(H,9,10)/i8+1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

WWZKQHOCKIZLMA-VJJZLTLGSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CCCCCCCC(=O)O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

CCCCCCC[13C](=O)O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C8H16O2
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID90436839
Record name Caprylic acid-1-13C
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID90436839
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

145.20 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

CAS No.

59669-16-8
Record name Octanoic acid 1-C-13
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0059669168
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Caprylic acid-1-13C
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID90436839
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name OCTANOIC ACID 1-13C
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/information-on-chemicals
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name OCTANOIC ACID 1-C-13
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/E775ICF82G
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.

Synthesis routes and methods

Procedure details

Next, 80 g of the triglycerides containing 40 wt % arachidonic acid (TGA40S) obtained in Example 1, 160 g of caprylic acid, 12 g of the aforementioned immobilized lipase and 4.8 ml of water were reacted for 48 hours at 30° C. while stirring (130 rpm). Upon completion of the reaction, the reaction solution was removed to obtain the activated immobilized enzyme.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Name
Quantity
4.8 mL
Type
solvent
Reaction Step One

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
(113C)octanoic acid
Reactant of Route 2
(113C)octanoic acid
Reactant of Route 3
Reactant of Route 3
(113C)octanoic acid
Reactant of Route 4
Reactant of Route 4
(113C)octanoic acid
Reactant of Route 5
(113C)octanoic acid
Reactant of Route 6
Reactant of Route 6
(113C)octanoic acid
Customer
Q & A

Q1: How does Octanoic Acid 1-C-13 help measure gastric emptying?

A1: Octanoic Acid 1-C-13 is a non-radioactive, stable isotope-labeled fatty acid. After ingestion, it is absorbed in the small intestine and metabolized in the liver, releasing carbon dioxide (CO2) labeled with Carbon-13 (13CO2). The 13CO2 is then expelled in the breath. By measuring the amount of 13CO2 in the breath over time, researchers and clinicians can assess the rate of gastric emptying. [, ]

Q2: Do pre-existing medical conditions affect the accuracy of the Octanoic Acid 1-C-13 breath test?

A2: Research suggests that common digestive and metabolic disturbances have a minimal influence on the results of the Octanoic Acid 1-C-13 breath test. A large study involving 1279 patients found that diseases such as pancreatic, liver, and lung disease, diabetes, and inflammatory bowel disease (IBD) had little impact on the key parameters measured by the test. []

Q3: What are the advantages of using mathematical models to analyze the data from Octanoic Acid 1-C-13 breath tests?

A3: Mathematical models can help improve the interpretation of 13CO2 excretion data from breath tests. For example, non-linear regression models can be used to determine the half-emptying time (T½) based on the shape of the breath test curve, while generalized linear regression models focus on the absolute amount of 13CO2 excreted. These models provide a more comprehensive analysis of gastric emptying compared to simply looking at cumulative 13CO2 excretion alone. []

Disclaimer and Information on In-Vitro Research Products

Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.