molecular formula C8H12S B1664577 2-tert-Butylthiophene CAS No. 1689-78-7

2-tert-Butylthiophene

Cat. No.: B1664577
CAS No.: 1689-78-7
M. Wt: 140.25 g/mol
InChI Key: SWCDOJGIOCVXFM-UHFFFAOYSA-N
Attention: For research use only. Not for human or veterinary use.
In Stock
  • Click on QUICK INQUIRY to receive a quote from our team of experts.
  • With the quality product at a COMPETITIVE price, you can focus more on your research.

Description

2-tert-Butylthiophene is an organic compound with the molecular formula C8H12S. It is a derivative of thiophene, a five-membered aromatic ring containing a sulfur atom. The tert-butyl group at the second position of the thiophene ring significantly influences its chemical properties and reactivity. This compound is of interest due to its applications in various fields, including organic synthesis, material science, and medicinal chemistry .

Safety and Hazards

The safety information for 2-tert-Butylthiophene includes several hazard statements: H302 (Harmful if swallowed), H315 (Causes skin irritation), H320 (Causes eye irritation), and H335 (May cause respiratory irritation) . Precautionary measures include avoiding getting the substance in eyes, on skin, or on clothing, and avoiding ingestion and inhalation .

Preparation Methods

Synthetic Routes and Reaction Conditions: 2-tert-Butylthiophene can be synthesized through several methods. One common approach involves the alkylation of thiophene with tert-butyl halides in the presence of a strong base. For example, the reaction of thiophene with tert-butyl bromide in the presence of a base such as potassium tert-butoxide can yield this compound .

Industrial Production Methods: Industrial production of this compound typically involves similar alkylation reactions but on a larger scale. The reaction conditions are optimized to maximize yield and purity, often involving the use of continuous flow reactors and advanced purification techniques .

Chemical Reactions Analysis

Types of Reactions: 2-tert-Butylthiophene undergoes various chemical reactions, including:

    Oxidation: It can be oxidized to form thiophene oxides and dioxides.

    Reduction: Reduction reactions can convert this compound to its corresponding dihydrothiophene derivatives.

    Substitution: Electrophilic substitution reactions can introduce various functional groups into the thiophene ring.

Common Reagents and Conditions:

    Oxidation: m-Chloroperbenzoic acid, hydrogen peroxide.

    Reduction: Lithium aluminum hydride.

    Substitution: Nitric acid, sulfuric acid.

Major Products Formed:

Comparison with Similar Compounds

Comparison: 2-tert-Butylthiophene is unique due to the presence of the bulky tert-butyl group, which can influence its steric and electronic properties. This can affect its reactivity and interactions with other molecules, making it distinct from other thiophene derivatives. For example, the tert-butyl group can provide steric hindrance, reducing the compound’s susceptibility to certain reactions compared to smaller substituents like methyl or butyl groups .

Properties

IUPAC Name

2-tert-butylthiophene
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C8H12S/c1-8(2,3)7-5-4-6-9-7/h4-6H,1-3H3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

SWCDOJGIOCVXFM-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CC(C)(C)C1=CC=CS1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C8H12S
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID7073270
Record name 2-tert-Butylthiophene
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID7073270
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

140.25 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

CAS No.

1689-78-7
Record name 2-tert-Butylthiophene
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0001689787
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name 2-tert-Butylthiophene
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID7073270
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name 2-TERT-BUTYLTHIOPHENE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/R5YF9YW3CR
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
2-tert-Butylthiophene
Reactant of Route 2
2-tert-Butylthiophene
Reactant of Route 3
2-tert-Butylthiophene
Reactant of Route 4
2-tert-Butylthiophene
Reactant of Route 5
2-tert-Butylthiophene
Reactant of Route 6
2-tert-Butylthiophene

Disclaimer and Information on In-Vitro Research Products

Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.