molecular formula C3H3NO2 B031594 2(3H)-oxazolone CAS No. 27584-70-9

2(3H)-oxazolone

Cat. No.: B031594
CAS No.: 27584-70-9
M. Wt: 85.06 g/mol
InChI Key: XYVMOLOUBJBNBF-UHFFFAOYSA-N
Attention: For research use only. Not for human or veterinary use.
In Stock
  • Click on QUICK INQUIRY to receive a quote from our team of experts.
  • With the quality product at a COMPETITIVE price, you can focus more on your research.

Description

2(3H)-Oxazolone is a heterocyclic organic compound characterized by a five-membered ring containing both nitrogen and oxygen atoms. This compound is notable for its reactivity and versatility in various chemical reactions, making it a valuable intermediate in organic synthesis and pharmaceutical research.

Safety and Hazards

Information about the safety and hazards of a compound is crucial for handling and storage. Unfortunately, specific information about the safety and hazards of 2(3H)-oxazolone was not found in the search results .

Future Directions

The future directions of research on a compound can include potential applications, areas of interest for further study, etc. Unfortunately, specific information about the future directions of research on 2(3H)-oxazolone was not found in the search results .

Preparation Methods

Synthetic Routes and Reaction Conditions: 2(3H)-Oxazolone can be synthesized through several methods, including the cyclization of amino acids or their derivatives. One common method involves the reaction of an amino acid with an isocyanate, leading to the formation of the oxazolone ring. Another approach is the cyclodehydration of N-acyl amino acids under acidic or basic conditions.

Industrial Production Methods: In industrial settings, the production of this compound often involves the use of high-purity starting materials and controlled reaction conditions to ensure high yields and purity. The process typically includes steps such as purification through recrystallization or chromatography to obtain the desired product.

Chemical Reactions Analysis

Types of Reactions: 2(3H)-Oxazolone undergoes various chemical reactions, including:

    Oxidation: It can be oxidized to form oxazolone derivatives with different functional groups.

    Reduction: Reduction reactions can convert oxazolone into corresponding amines or other reduced forms.

    Substitution: The compound can participate in nucleophilic substitution reactions, where nucleophiles replace specific atoms or groups within the oxazolone ring.

Common Reagents and Conditions:

    Oxidation: Common oxidizing agents include potassium permanganate and hydrogen peroxide.

    Reduction: Reducing agents such as lithium aluminum hydride or sodium borohydride are often used.

    Substitution: Nucleophiles like amines, thiols, or alcohols can be used under appropriate conditions to achieve substitution reactions.

Major Products Formed: The major products formed from these reactions depend on the specific reagents and conditions used. For example, oxidation may yield oxazolone derivatives with hydroxyl or carbonyl groups, while reduction can produce amines.

Scientific Research Applications

2(3H)-Oxazolone has a wide range of applications in scientific research, including:

    Chemistry: It serves as an intermediate in the synthesis of various organic compounds, including pharmaceuticals and agrochemicals.

    Biology: The compound is used in the study of enzyme mechanisms and protein modifications.

    Medicine: this compound derivatives have been investigated for their potential therapeutic properties, including antimicrobial and anticancer activities.

    Industry: It is used in the production of polymers, resins, and other industrial materials.

Comparison with Similar Compounds

    2(3H)-Thiazolone: Similar in structure but contains sulfur instead of oxygen.

    2(3H)-Imidazolone: Contains an additional nitrogen atom in the ring.

    2(3H)-Isoxazolone: Features a different arrangement of nitrogen and oxygen atoms.

Uniqueness: 2(3H)-Oxazolone is unique due to its specific ring structure and the presence of both nitrogen and oxygen atoms, which confer distinct reactivity and properties. This makes it particularly valuable in synthetic chemistry and pharmaceutical research, where it can be used to create a wide variety of derivatives with diverse biological activities.

Properties

IUPAC Name

3H-1,3-oxazol-2-one
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C3H3NO2/c5-3-4-1-2-6-3/h1-2H,(H,4,5)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

XYVMOLOUBJBNBF-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

C1=COC(=O)N1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C3H3NO2
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID80181982
Record name 4-Oxazolin-2-one
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID80181982
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

85.06 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

CAS No.

27584-70-9
Record name 4-Oxazolin-2-one
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0027584709
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name 4-Oxazolin-2-one
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID80181982
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name 2,3-dihydro-1,3-oxazol-2-one
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/information-on-chemicals
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.

Disclaimer and Information on In-Vitro Research Products

Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.