molecular formula C10H15NO B041025 (R)-3-(methylamino)-1-phenylpropan-1-ol CAS No. 115290-81-8

(R)-3-(methylamino)-1-phenylpropan-1-ol

Cat. No.: B041025
CAS No.: 115290-81-8
M. Wt: 165.23 g/mol
InChI Key: XXSDCGNHLFVSET-SNVBAGLBSA-N
Attention: For research use only. Not for human or veterinary use.
In Stock
  • Click on QUICK INQUIRY to receive a quote from our team of experts.
  • With the quality product at a COMPETITIVE price, you can focus more on your research.

Description

®-3-(methylamino)-1-phenylpropan-1-ol is an organic compound with significant importance in various fields of chemistry and pharmacology. It is a chiral molecule, meaning it has a specific three-dimensional arrangement that is not superimposable on its mirror image. This compound is known for its applications in the synthesis of pharmaceuticals and as an intermediate in organic synthesis.

Scientific Research Applications

®-3-(methylamino)-1-phenylpropan-1-ol has a wide range of applications in scientific research:

Preparation Methods

Synthetic Routes and Reaction Conditions: The synthesis of ®-3-(methylamino)-1-phenylpropan-1-ol can be achieved through several methods. One common approach involves the reductive amination of 1-hydroxy-1-phenylpropan-2-one with methylamine. This reaction typically requires a catalyst, such as platinum or palladium, and is carried out under hydrogenation conditions . The stereoselectivity of this reaction is crucial, as it determines the specific enantiomer produced.

Industrial Production Methods: In an industrial setting, the production of ®-3-(methylamino)-1-phenylpropan-1-ol may involve dynamic kinetic resolution (DKR) techniques. These methods utilize enzymes or metal catalysts to selectively produce the desired enantiomer while converting the undesired enantiomer back to the starting material . This approach enhances the overall yield and efficiency of the production process.

Chemical Reactions Analysis

Types of Reactions: ®-3-(methylamino)-1-phenylpropan-1-ol undergoes various chemical reactions, including:

Common Reagents and Conditions:

    Oxidation: Common oxidizing agents include potassium permanganate and chromium trioxide.

    Reduction: Reducing agents such as sodium borohydride or lithium aluminum hydride are typically used.

    Substitution: Reagents like thionyl chloride or phosphorus tribromide can facilitate substitution reactions.

Major Products: The major products formed from these reactions depend on the specific conditions and reagents used. For example, oxidation may yield ketones or aldehydes, while reduction can produce secondary or tertiary amines .

Mechanism of Action

The mechanism of action of ®-3-(methylamino)-1-phenylpropan-1-ol involves its interaction with specific molecular targets, such as enzymes or receptors. The compound can act as an agonist or antagonist, depending on the target and the context of its use. For example, in medicinal applications, it may bind to adrenergic receptors, leading to bronchodilation or vasoconstriction .

Comparison with Similar Compounds

Comparison: ®-3-(methylamino)-1-phenylpropan-1-ol is unique due to its specific chiral configuration and the presence of both a hydroxyl and a methylamino group. This combination of functional groups allows it to participate in a wide range of chemical reactions and makes it a valuable intermediate in organic synthesis. Compared to similar compounds, it offers distinct advantages in terms of reactivity and selectivity in various applications.

Properties

IUPAC Name

(1R)-3-(methylamino)-1-phenylpropan-1-ol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C10H15NO/c1-11-8-7-10(12)9-5-3-2-4-6-9/h2-6,10-12H,7-8H2,1H3/t10-/m1/s1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

XXSDCGNHLFVSET-SNVBAGLBSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CNCCC(C1=CC=CC=C1)O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

CNCC[C@H](C1=CC=CC=C1)O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C10H15NO
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Weight

165.23 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Synthesis routes and methods I

Procedure details

2-Methyl-5-phenylisoxazolidine (54.3 g, 333 mmol) and Pd/C (2.7 g) in EtOH (55.0 g) are heated to 60°-80° C. in a 300-mL, stirred (700 rpm), Hastalloy autoclave which is kept pressurized to 55 psig with H2 for 5 hours. After cooling, the mixture is filtered and the EtOH removed in vacuo to give N-methyl-3-phenyl-3-hydroxypropylamine.
Quantity
54.3 g
Type
reactant
Reaction Step One
Name
Quantity
55 g
Type
solvent
Reaction Step One
Name
Quantity
2.7 g
Type
catalyst
Reaction Step One

Synthesis routes and methods II

Procedure details

2-Methyl-5-phenylisoxazolidine (38.1 g, 234 mmol) dissolved in tetramethylene sulfone (38.1 g) is mixed with 5% Pd/C (1.9 g) in a glass pressure reactor. The reactor is warmed to 50° C. and the pressure is maintained at 40 psig with H2 for 24 hours. Ethanol (38.1 g) is added and heating is continued for 48 hours. After cooling, the mixture is filtered and the EtOH is removed to give a solution of N-methyl-3-phenyl-3-hydroxypropylamine in tetramethylene sulfone.
Quantity
38.1 g
Type
reactant
Reaction Step One
Quantity
38.1 g
Type
solvent
Reaction Step One
Quantity
38.1 g
Type
reactant
Reaction Step Two
Name
Quantity
1.9 g
Type
catalyst
Reaction Step Three

Synthesis routes and methods III

Procedure details

2-Methyl-5-phenylisoxazolidine (2.0 g, 12.3 mmol) and Zn powder (1.2 g, 18.3 mmol) in 10 molar aqueous acetic acid are heated to 65°-70° C. for 4 hours. Additional Zn powder (0.4 g, 6.1 mmol) is added and heating is continued for one more hour. The reaction mixture is neutralized with sodium hydroxide and extracted with chloroform. The extract is dried (K2CO3) and concentrated to give N-methyl-3-phenyl-3-hydroxy-propyl-amine.
Quantity
2 g
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
solvent
Reaction Step One
Name
Quantity
1.2 g
Type
catalyst
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Name
Quantity
0.4 g
Type
catalyst
Reaction Step Three

Synthesis routes and methods IV

Procedure details

Name
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One
Name
COCNCCC(O)c1ccccc1
Quantity
Extracted from reaction SMILES
Type
reactant
Reaction Step One

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
(R)-3-(methylamino)-1-phenylpropan-1-ol
Reactant of Route 2
Reactant of Route 2
(R)-3-(methylamino)-1-phenylpropan-1-ol
Reactant of Route 3
Reactant of Route 3
(R)-3-(methylamino)-1-phenylpropan-1-ol
Reactant of Route 4
Reactant of Route 4
(R)-3-(methylamino)-1-phenylpropan-1-ol
Reactant of Route 5
(R)-3-(methylamino)-1-phenylpropan-1-ol
Reactant of Route 6
Reactant of Route 6
(R)-3-(methylamino)-1-phenylpropan-1-ol

Disclaimer and Information on In-Vitro Research Products

Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.