molecular formula C5H12N2 B564433 1-(Trideuteriomethyl)piperazine CAS No. 1093380-08-5

1-(Trideuteriomethyl)piperazine

Cat. No.: B564433
CAS No.: 1093380-08-5
M. Wt: 103.183
InChI Key: PVOAHINGSUIXLS-FIBGUPNXSA-N
Attention: For research use only. Not for human or veterinary use.
In Stock
  • Click on QUICK INQUIRY to receive a quote from our team of experts.
  • With the quality product at a COMPETITIVE price, you can focus more on your research.

Description

1-(Trideuteriomethyl)piperazine is a deuterated derivative of piperazine, a heterocyclic organic compound The deuterium atoms replace the hydrogen atoms in the methyl group, which can influence the compound’s physical and chemical properties

Scientific Research Applications

1-(Trideuteriomethyl)piperazine has a wide range of applications in scientific research:

    Chemistry: It is used as a building block in the synthesis of complex molecules and as a deuterated standard in NMR spectroscopy.

    Biology: The compound is utilized in studies involving metabolic pathways and enzyme mechanisms.

    Medicine: It has potential therapeutic applications due to its stability and unique isotopic properties.

    Industry: The compound is used in the development of new materials and as a tracer in various industrial processes.

Safety and Hazards

Piperazine is considered hazardous. It is a flammable solid and causes severe skin burns and eye damage. It may cause an allergic skin reaction and may cause allergy or asthma symptoms or breathing difficulties if inhaled. It is also suspected of damaging fertility or the unborn child .

Biochemical Analysis

Biochemical Properties

1-(Trideuteriomethyl)piperazine plays a significant role in biochemical reactions. It interacts with various enzymes, proteins, and other biomolecules. For instance, it has been found to inhibit the activity of certain efflux pumps in bacteria, thereby increasing the sensitivity of these organisms to antibiotics . The nature of these interactions is largely dependent on the specific biochemical context in which this compound is present .

Cellular Effects

The effects of this compound on various types of cells and cellular processes are diverse. It influences cell function by impacting cell signaling pathways, gene expression, and cellular metabolism . For example, it has been shown to have significant effects on the function of immune cells .

Molecular Mechanism

The mechanism of action of this compound involves complex interactions at the molecular level. It binds to specific biomolecules, inhibits or activates enzymes, and induces changes in gene expression . These actions contribute to its overall effects on cellular and physiological processes.

Temporal Effects in Laboratory Settings

In laboratory settings, the effects of this compound can change over time. This includes information on the product’s stability, degradation, and any long-term effects on cellular function observed in in vitro or in vivo studies .

Dosage Effects in Animal Models

The effects of this compound vary with different dosages in animal models. At therapeutic doses, it is generally well-tolerated, but at higher doses, it can cause neurotoxic symptoms .

Metabolic Pathways

This compound is involved in various metabolic pathways. It interacts with enzymes and cofactors, and can affect metabolic flux or metabolite levels .

Transport and Distribution

This compound is transported and distributed within cells and tissues. It interacts with transporters or binding proteins, and can affect its localization or accumulation .

Subcellular Localization

It could include any targeting signals or post-translational modifications that direct it to specific compartments or organelles .

Preparation Methods

Synthetic Routes and Reaction Conditions: 1-(Trideuteriomethyl)piperazine can be synthesized through various methods. One common approach involves the deuteration of 1-methylpiperazine using deuterium gas or deuterated reagents. The reaction typically requires a catalyst and specific conditions to ensure the incorporation of deuterium atoms.

Industrial Production Methods: Industrial production of this compound often involves large-scale deuteration processes. These processes are optimized for high yield and purity, utilizing advanced catalytic systems and controlled reaction environments to achieve the desired isotopic substitution.

Chemical Reactions Analysis

Types of Reactions: 1-(Trideuteriomethyl)piperazine undergoes various chemical reactions, including:

    Oxidation: The compound can be oxidized to form corresponding N-oxides.

    Reduction: Reduction reactions can lead to the formation of deuterated amines.

    Substitution: Nucleophilic substitution reactions can occur at the nitrogen atoms or the deuterated methyl group.

Common Reagents and Conditions:

    Oxidation: Common oxidizing agents include hydrogen peroxide and peracids.

    Reduction: Reducing agents such as lithium aluminum hydride or sodium borohydride are used.

    Substitution: Halogenated compounds and strong bases are often employed in substitution reactions.

Major Products: The major products formed from these reactions depend on the specific reagents and conditions used. For example, oxidation can yield N-oxides, while reduction can produce deuterated amines.

Comparison with Similar Compounds

1-(Trideuteriomethyl)piperazine can be compared with other deuterated piperazine derivatives and non-deuterated analogs:

    Similar Compounds: 1-methylpiperazine, 1-(trideuteriomethyl)piperidine, and 1-(trideuteriomethyl)morpholine.

    Uniqueness: The presence of deuterium atoms in this compound provides enhanced stability and altered metabolic pathways compared to its non-deuterated counterparts. This makes it particularly useful in applications requiring precise isotopic labeling and stability.

Properties

IUPAC Name

1-(trideuteriomethyl)piperazine
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C5H12N2/c1-7-4-2-6-3-5-7/h6H,2-5H2,1H3/i1D3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

PVOAHINGSUIXLS-FIBGUPNXSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CN1CCNCC1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

[2H]C([2H])([2H])N1CCNCC1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C5H12N2
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Weight

103.18 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Synthesis routes and methods I

Procedure details

A solution of 86 g. (1.0 mole) of piperazine in 262 g. ethanol was added with stirring to 130 g. (1.6 moles) of 37% formalin in an appropriate vessel at a temperature of 30°-40°C. maintained with cooling. This slurry, containing 25 wt.% water and 75 wt.% ethanol as solvent, based on solvent weight, was then charged to an autoclave containing 14 g. of a supported nickel catalyst (Harshaw Ni-3266P, Harshaw Chemical Company) and stirred in a hydrogen atmosphere at 91°C. under 50 psig for 5 hours. Analysis of the crude product by gas liquid chromatography, calculating on a water-alcohol free basis, gave 60.4% 1,4-dimethylpiperazine, 38.2% 1-methylpiperazine, and 0.5% piperazine.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Name
Quantity
0 (± 1) mol
Type
solvent
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Quantity
0 (± 1) mol
Type
catalyst
Reaction Step Two
Quantity
1 mol
Type
reactant
Reaction Step Three
Quantity
1.6 mol
Type
reactant
Reaction Step Four
[Compound]
Name
crude product
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Five
[Compound]
Name
water-alcohol
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Six
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Seven
Yield
38.2%
Yield
0.5%

Synthesis routes and methods II

Procedure details

A mixture of 2-chloro-3,4-bis(p-methoxybenzyloxy)benzoic acid (0.61 g: 1.42 mMol.) is reacted with 1-hydroxybenzotriazole (231 mg: 1.2 Eq.) and dicyclohexylcarbodiimide (352 mg: 1.2 Eq.) in tetrahydrofuran at room temperature for 1 hour, and then with N-methylpiperazine (0.32 ml: 2 Eq.) for 1 hour to give 1-(2-chloro-3,4-bis(p-methoxybenzyloxy)benzoyl)-4-methylpiperazine (0.72 g). Yield: 99%.
Quantity
0.61 g
Type
reactant
Reaction Step One
Quantity
231 mg
Type
reactant
Reaction Step Two
Quantity
352 mg
Type
reactant
Reaction Step Two

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
1-(Trideuteriomethyl)piperazine
Reactant of Route 2
1-(Trideuteriomethyl)piperazine
Reactant of Route 3
1-(Trideuteriomethyl)piperazine
Reactant of Route 4
1-(Trideuteriomethyl)piperazine
Reactant of Route 5
1-(Trideuteriomethyl)piperazine
Reactant of Route 6
1-(Trideuteriomethyl)piperazine

Disclaimer and Information on In-Vitro Research Products

Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.