molecular formula C16H22ClNO2 B584004 (S)-Propranolol-d7 Hydrochloride CAS No. 1346617-12-6

(S)-Propranolol-d7 Hydrochloride

Cat. No.: B584004
CAS No.: 1346617-12-6
M. Wt: 302.85
InChI Key: ZMRUPTIKESYGQW-HLRQKBRWSA-N
Attention: For research use only. Not for human or veterinary use.
In Stock
  • Click on QUICK INQUIRY to receive a quote from our team of experts.
  • With the quality product at a COMPETITIVE price, you can focus more on your research.

Description

(S)-Propranolol-d7 Hydrochloride is a deuterated form of (S)-Propranolol, a beta-adrenergic receptor antagonist. The deuterium atoms replace the hydrogen atoms in the propranolol molecule, which can be useful in pharmacokinetic studies due to the isotope effect. This compound is primarily used in scientific research to study the pharmacokinetics and metabolism of propranolol.

Scientific Research Applications

(S)-Propranolol-d7 Hydrochloride has a wide range of applications in scientific research:

    Pharmacokinetics: Used to study the absorption, distribution, metabolism, and excretion of propranolol in the body.

    Metabolism Studies: Helps in identifying metabolic pathways and intermediates of propranolol.

    Drug Development: Assists in the development of new beta-blockers and related compounds.

    Isotope Effect Studies: Used to study the kinetic isotope effect and its impact on drug metabolism and pharmacokinetics.

Mechanism of Action

The mechanism of action of a drug refers to how it produces its effects in the body. Unfortunately, the specific mechanism of action for “(S)-Propranolol-d7 Hydrochloride” was not found .

Safety and Hazards

The safety and hazards of a compound refer to its potential risks and precautions needed when handling it . The specific safety and hazards information for “(S)-Propranolol-d7 Hydrochloride” was not found.

Preparation Methods

Synthetic Routes and Reaction Conditions

The synthesis of (S)-Propranolol-d7 Hydrochloride involves the incorporation of deuterium atoms into the propranolol molecule. One common method is the catalytic exchange of hydrogen atoms with deuterium in the presence of a deuterium source such as deuterium oxide (D2O) or deuterated solvents. The reaction typically requires a catalyst like palladium on carbon (Pd/C) and is carried out under mild conditions to ensure selective deuteration.

Industrial Production Methods

Industrial production of this compound follows similar principles but on a larger scale. The process involves the use of high-pressure reactors and continuous flow systems to achieve efficient deuteration. The final product is purified using chromatographic techniques to ensure high purity and isotopic enrichment.

Chemical Reactions Analysis

Types of Reactions

(S)-Propranolol-d7 Hydrochloride undergoes various chemical reactions, including:

    Oxidation: The compound can be oxidized to form corresponding quinones or other oxidized derivatives.

    Reduction: Reduction reactions can convert the compound back to its parent form or other reduced derivatives.

    Substitution: The aromatic ring and hydroxyl groups can undergo substitution reactions with various electrophiles or nucleophiles.

Common Reagents and Conditions

    Oxidation: Common oxidizing agents include potassium permanganate (KMnO4) and chromium trioxide (CrO3).

    Reduction: Reducing agents such as sodium borohydride (NaBH4) or lithium aluminum hydride (LiAlH4) are used.

    Substitution: Reagents like halogens (Cl2, Br2) or nucleophiles (NH3, OH-) are employed under appropriate conditions.

Major Products Formed

The major products formed from these reactions depend on the specific conditions and reagents used. For example, oxidation can yield quinones, while reduction can produce alcohols or amines. Substitution reactions can introduce various functional groups onto the aromatic ring or hydroxyl groups.

Comparison with Similar Compounds

Similar Compounds

    (S)-Propranolol: The non-deuterated form of the compound.

    ®-Propranolol: The enantiomer of (S)-Propranolol with different pharmacological properties.

    Atenolol: Another beta-blocker with a different chemical structure but similar therapeutic effects.

    Metoprolol: A beta-blocker with selective beta-1 adrenergic receptor antagonism.

Uniqueness

(S)-Propranolol-d7 Hydrochloride is unique due to the presence of deuterium atoms, which provide advantages in pharmacokinetic studies by reducing the rate of metabolic degradation. This makes it a valuable tool in drug development and research, offering insights into the behavior of propranolol and its analogs in biological systems.

Properties

{ "Design of the Synthesis Pathway": "The synthesis pathway of (S)-Propranolol-d7 Hydrochloride involves the conversion of (S)-Propranolol to (S)-Propranolol-d7 followed by the formation of its hydrochloride salt.", "Starting Materials": [ "(S)-Propranolol", "D2O", "Deuterium gas", "Hydrochloric acid", "Sodium hydroxide", "Sodium carbonate", "Ethyl acetate", "Methanol", "Diethyl ether" ], "Reaction": [ "1. (S)-Propranolol is dissolved in D2O and deuterium gas is bubbled through the solution to produce (S)-Propranolol-d7.", "2. The solution is neutralized with sodium hydroxide and extracted with ethyl acetate.", "3. The organic layer is washed with sodium carbonate solution and dried over anhydrous sodium sulfate.", "4. The solvent is evaporated and the residue is dissolved in methanol.", "5. Hydrochloric acid is added to the solution to form (S)-Propranolol-d7 Hydrochloride.", "6. The product is isolated by filtration, washed with diethyl ether, and dried under vacuum." ] }

CAS No.

1346617-12-6

Molecular Formula

C16H22ClNO2

Molecular Weight

302.85

IUPAC Name

(2S)-1-(1,1,1,2,3,3,3-heptadeuteriopropan-2-ylamino)-3-naphthalen-1-yloxypropan-2-ol;hydrochloride

InChI

InChI=1S/C16H21NO2.ClH/c1-12(2)17-10-14(18)11-19-16-9-5-7-13-6-3-4-8-15(13)16;/h3-9,12,14,17-18H,10-11H2,1-2H3;1H/t14-;/m0./s1/i1D3,2D3,12D;

InChI Key

ZMRUPTIKESYGQW-HLRQKBRWSA-N

SMILES

CC(C)NCC(COC1=CC=CC2=CC=CC=C21)O.Cl

Synonyms

(2S)-1-[(1-Methylethyl-d7)amino]-3-(1-naphthalenyloxy)-2-propanol Hydrochloride;  _x000B_S-(-)-1-(Isopropyl-d7)amino-3-(1-naphthoxy)-2-propanol Hydrochloride;  (-)-Propranolol-d7 Hydrochloride;  (S)-(-)-Propranolol-d7 Hydrochloride;  L-(-)-Propranolol-d7 Hydro

Origin of Product

United States

Synthesis routes and methods

Procedure details

1-(isopropyl)-3-azetidinol and α-naphthol were reacted in the same manner as in Example 6 to form 1-(α-naphthoxy)-3-(iso-propylamino)-2-propanol. Then the propanol was dissolved in anhydrous ether and was converted to a hydrochloride by blowing a hydrochloric acid gas into the resulting solution. As a result 1-(α-naphthoxy)-3-(isopropylamino)-2-propanol hydrochloride melting at 162°-164° C was obtained.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Name
Quantity
0 (± 1) mol
Type
solvent
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Three

Disclaimer and Information on In-Vitro Research Products

Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.