molecular formula C33H43N3O6 B1665140 Aplaviroc CAS No. 461443-59-4

Aplaviroc

Cat. No.: B1665140
CAS No.: 461443-59-4
M. Wt: 577.7 g/mol
InChI Key: GWNOTCOIYUNTQP-FQLXRVMXSA-N
Attention: For research use only. Not for human or veterinary use.
In Stock
  • Click on QUICK INQUIRY to receive a quote from our team of experts.
  • With the quality product at a COMPETITIVE price, you can focus more on your research.

Description

Aplaviroc is a compound that belongs to the class of 2,5-diketopiperazines. It was developed as a CCR5 entry inhibitor for the treatment of HIV infection. The compound was designed to block the entry of the virus into human cells by targeting the CCR5 receptor, which is a critical co-receptor for HIV-1 entry .

Scientific Research Applications

Aplaviroc has been extensively studied for its potential in treating HIV infection. Its primary application is in inhibiting the entry of the virus into human cells by blocking the CCR5 receptor. This makes it a valuable tool in both clinical and research settings for studying HIV entry mechanisms and developing new therapeutic strategies .

Additionally, this compound has shown potential in other areas of research, such as:

Mechanism of Action

Aplaviroc is a novel CCR5 receptor antagonist that binds specifically to human CCR5 . It binds to human CCR5 with a unique profile, as evidenced by the selective inhibition of monoclonal antibody binding . This mechanism of action is different from currently available classes of HIV drugs, which bind to viral enzymes in cells .

Preparation Methods

Synthetic Routes and Reaction Conditions: The synthesis of aplaviroc involves multiple steps, starting with the preparation of the spiro-diketopiperazine core. This core is then functionalized with various substituents to achieve the final structure. The key steps include:

  • Formation of the diketopiperazine ring.
  • Introduction of the butyl and cyclohexyl groups.
  • Attachment of the phenoxybenzoic acid moiety.

Industrial Production Methods: Industrial production of this compound would likely involve optimization of the synthetic route to maximize yield and purity. This includes the use of high-efficiency catalysts, controlled reaction conditions, and purification techniques such as crystallization and chromatography .

Chemical Reactions Analysis

Types of Reactions: Aplaviroc undergoes several types of chemical reactions, including:

    Oxidation: The hydroxyl group on the cyclohexyl ring can be oxidized to a ketone.

    Reduction: The diketopiperazine ring can be reduced under specific conditions.

    Substitution: The phenoxy group can be substituted with other functional groups.

Common Reagents and Conditions:

    Oxidation: Reagents such as potassium permanganate or chromium trioxide.

    Reduction: Reagents like sodium borohydride or lithium aluminum hydride.

    Substitution: Various nucleophiles under basic or acidic conditions.

Major Products: The major products formed from these reactions depend on the specific conditions and reagents used. For example, oxidation of the hydroxyl group would yield a ketone, while substitution reactions could introduce a variety of functional groups .

Comparison with Similar Compounds

    Maraviroc: Another CCR5 antagonist used in HIV treatment.

    Vicriviroc: A CCR5 antagonist in late clinical trials.

    PRO140: A monoclonal antibody against CCR5.

Comparison: Aplaviroc is unique in its chemical structure, particularly the spiro-diketopiperazine core, which distinguishes it from other CCR5 antagonists like maraviroc and vicriviroc. While all these compounds target the same receptor, this compound’s specific binding profile and allosteric inhibition mechanism provide distinct advantages and challenges, such as its potent antiviral activity and issues with hepatotoxicity .

Properties

IUPAC Name

4-[4-[[(3R)-1-butyl-3-[(R)-cyclohexyl(hydroxy)methyl]-2,5-dioxo-1,4,9-triazaspiro[5.5]undecan-9-yl]methyl]phenoxy]benzoic acid
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C33H43N3O6/c1-2-3-19-36-30(38)28(29(37)24-7-5-4-6-8-24)34-32(41)33(36)17-20-35(21-18-33)22-23-9-13-26(14-10-23)42-27-15-11-25(12-16-27)31(39)40/h9-16,24,28-29,37H,2-8,17-22H2,1H3,(H,34,41)(H,39,40)/t28-,29-/m1/s1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

GWNOTCOIYUNTQP-FQLXRVMXSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CCCCN1C(=O)C(NC(=O)C12CCN(CC2)CC3=CC=C(C=C3)OC4=CC=C(C=C4)C(=O)O)C(C5CCCCC5)O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

CCCCN1C(=O)[C@H](NC(=O)C12CCN(CC2)CC3=CC=C(C=C3)OC4=CC=C(C=C4)C(=O)O)[C@@H](C5CCCCC5)O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C33H43N3O6
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID6047317
Record name Aplaviroc
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID6047317
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

577.7 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Mechanism of Action

GW873140 is a novel CCR5 receptor antagonist that binds specifically to human CCR5. It binds to human CCR5 with a unique profile as evidenced by the selective inhibition of monoclonal antibody binding. One of the many ways in which CCR5 inhibitors differ from the currently available classes of HIV drugs is that they bind to the host (CCR5 receptor), the cell, target rather than to the viral enzymes in cells like the CD4 cell.
Record name Aplaviroc
Source DrugBank
URL https://www.drugbank.ca/drugs/DB06497
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)

CAS No.

461443-59-4
Record name Aplaviroc
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=461443-59-4
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Aplaviroc [INN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0461443594
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Aplaviroc
Source DrugBank
URL https://www.drugbank.ca/drugs/DB06497
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Aplaviroc
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID6047317
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name APLAVIROC
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/98B425P30V
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Aplaviroc
Reactant of Route 2
Aplaviroc
Reactant of Route 3
Aplaviroc
Reactant of Route 4
Aplaviroc
Reactant of Route 5
Reactant of Route 5
Aplaviroc
Reactant of Route 6
Aplaviroc

Disclaimer and Information on In-Vitro Research Products

Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.