
Levonorgestrel
Description
Historical Context of its Chemical Discovery and Synthetic Development
The journey to levonorgestrel began with the synthesis of norgestrel, a racemic mixture, by Hughes and colleagues at Wyeth in 1963. wikipedia.org This was a significant achievement as norgestrel was the first progestogen to be created via total chemical synthesis, rather than partial synthesis from natural steroid precursors. wikipedia.orgkup.at The total synthesis of steroid hormones was a major focus of mid-20th-century organic chemistry, with researchers like Herchel Smith making significant contributions. britannica.comacs.org
Following its discovery, Wyeth licensed norgestrel to Schering AG. wikipedia.org Chemists at Schering successfully separated the racemic mixture into its two optical isomers, identifying this compound as the biologically active component. wikipedia.org This separation was crucial as it allowed for the development of a more refined hormonal product. By isolating the active enantiomer, the dose could be effectively halved, reducing the potential for adverse effects. wikipedia.org
This compound was first studied in humans around 1970 and was introduced for medical use in Germany in August 1970 as a component of a combined oral contraceptive. wikipedia.org The development of second-generation oral contraceptives in the 1970s featured this compound, often combined with ethinylestradiol, at much lower doses than first-generation pills. ogmagazine.org.au
Significance in Steroid Chemistry and Pharmacology Research
This compound's development holds considerable significance in the fields of steroid chemistry and pharmacology. The total synthesis of its parent compound, norgestrel, marked a pivotal moment in steroid manufacturing, moving away from reliance on natural sources. wikipedia.orgkup.at
From a pharmacological perspective, this compound is a potent agonist of the progesterone receptor (PGR), with a binding affinity reported to be 323% that of progesterone itself. pharmgkb.org Its primary mechanism of action involves binding to progesterone and androgen receptors, which in turn slows the release of gonadotropin-releasing hormone (GnRH) from the hypothalamus. drugbank.com This action suppresses the luteinizing hormone (LH) surge, thereby inhibiting ovulation. britannica.comdrugbank.com Additionally, it increases the viscosity of cervical mucus, which hinders sperm migration. drugbank.commims.com
Research into this compound's interactions with various steroid receptors has provided a deeper understanding of its biological effects. It exhibits high progestogenic and androgenic activity. pharmgkb.org Its affinity for the androgen receptor (AR) is about 58% that of testosterone. pharmgkb.org In contrast, it has very low affinity for the estrogen receptor (ER), which explains its lack of estrogenic effects. pharmgkb.orgnih.gov It also shows some affinity for the mineralocorticoid receptor but has no significant mineralocorticoid or antimineralocorticoid activity. wikipedia.orgpharmgkb.org
The exploration of this compound and its derivatives continues, with research into compounds like this compound epoxides, which may have different pharmacokinetic and pharmacodynamic profiles. ontosight.aiontosight.ai This ongoing research underscores the compound's lasting importance in the development of new hormonal therapies. ontosight.ai
Interactive Data Tables
Table 1: Chemical Properties of this compound
Property | Value | Source |
Chemical Formula | C21H28O2 | daicelpharmastandards.comhmdb.ca |
Molecular Weight | 312.45 g/mol | daicelpharmastandards.comhmdb.ca |
IUPAC Name | (1S,2R,10R,11S,14R,15S)-15-ethyl-14-ethynyl-14-hydroxytetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one | hmdb.ca |
CAS Number | 797-63-7 | hmdb.ca |
Physical Description | White or off-white crystalline powder | google.com |
Solubility | Insoluble in water, soluble in chloroform, slightly soluble in methanol | google.com |
Table 2: Pharmacological Profile of this compound
Parameter | Description | Source |
Mechanism of Action | Agonist of progesterone and androgen receptors; inhibits ovulation and thickens cervical mucus. | drugbank.comnih.gov |
Protein Binding | Approximately 98% (50% to albumin, 48% to SHBG) | wikipedia.org |
Metabolism | Hepatic (reduction, hydroxylation, conjugation) | wikipedia.org |
Bioavailability | ~95% (oral) | wikipedia.org |
Primary Metabolites | 5α-dihydrothis compound, 3α,5α-tetrahydrothis compound | wikipedia.orgnih.gov |
Table 3: Relative Binding Affinity of this compound to Steroid Receptors
Receptor | Relative Binding Affinity (%) (Compared to natural ligand) | Source |
Progesterone Receptor (PGR) | 323 | pharmgkb.org |
Androgen Receptor (AR) | 58 | pharmgkb.org |
Mineralocorticoid Receptor (MR) | 17 | pharmgkb.org |
Glucocorticoid Receptor (GR) | 7.5 | pharmgkb.org |
Estrogen Receptor (ER) | <0.02 | pharmgkb.org |
Properties
Key on ui mechanism of action |
Norgestrel (and more specifically the active stereoisomer levonorgestrel) binds to the progesterone and estrogen receptors within the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Once bound to the receptor, progestins like levonorgestrel will slow the frequency of release of gonadotropin releasing hormone (GnRH) from the hypothalamus and blunt the pre-ovulatory LH (luteinizing hormone) surge. Loss of the LH surge inhibits ovulation and thereby prevents pregnancy. Combination oral contraceptives act by suppression of gonadotrophins. Although the primary mechanism of this action is inhibition of ovulation, other alterations include changes in the cer-vical mucus (which increase the difficulty of sperm entry into the uterus) and the endometrium (which may reduce the likelihood of implantation). Progestins enter target cells by passive diffusion and bind to cytosolic (soluble) receptors that are loosely bound in the nucleus. The steroid receptor complex initiates transcription, resulting in an increase in protein synthesis. /Progestins/ Progestins are capable of affecting serum concentrations of other hormones, particularly estrogen. Estrogenic effects are modified by the progestins, either by reducing the availability or stability of the hormone receptor complex or by turning off specific hormone-responsive genes by direct interaction with the progestin receptor in the nucleus. In addition, estrogen priming is necessary to increase progestin effects by upregulating the number of progestin receptors and/or increasing progesterone production, causing a negative feedback mechanism that inhibits estrogen receptors. /Progestins/ There is great concern over the long-term influence of oral contraceptives on the development of breast cancer in women. Estrogens are known to stimulate the growth of human breast cancer cells, and /it/ has previously reported that the 19-norprogestin norethindrone could stimulate the proliferation of MCF-7 human breast cancer cells. /Investigators/ studied the influence of the 19-norprogestins norgestrel and gestodene compared to a 'non' 19-norprogestin medroxyprogesterone acetate (MPA) on MCF-7 cell proliferation. The 19-norprogestins stimulated proliferation at a concentration of 10(-8) M, while MPA could not stimulate proliferation at concentrations as great as 3 x 10(-6) M. The stimulatory activity of the 19-norprogestins could be blocked by the antioestrogen ICI 164,384, but not by the antiprogestin RU486. Transfection studies with the reporter plasmids containing an estrogen response element or progesterone response element (vitERE-CAT, pS2ERE-CAT, and PRE15-CAT) were performed to determine the intracellular action of norgestrel and gestodene. The 19-norprogestins stimulated the vitERE-CAT activity maximally at 10(-6) M, and this stimulation was inhibited by the addition of ICI 164,384. MPA did not stimulate vitERE-CAT activity. A single base pair alteration in the palindromic sequence of vitERE (resulting in the pS2ERE) led to a dramatic decrease in CAT expression by the 19-norprogestins, suggesting that the progestin activity required specific response element base sequencing. PRE15-CAT activity was stimulated by norgestrel, gestodene and MPA at concentrations well below growth stimulatory activity. This stimulation could be blocked by RU486. These studies suggest that the 19-norprogestins norgestrel and gestodene stimulate MCF-7 breast cancer cell growth by activating the estrogen receptor. |
---|---|
CAS No. |
6533-00-2 |
Molecular Formula |
C21H28O2 |
Molecular Weight |
318.5 g/mol |
IUPAC Name |
(10R,13S,17R)-2,2,4,6,6,10-hexadeuterio-13-ethyl-17-ethynyl-17-hydroxy-7,8,9,11,12,14,15,16-octahydro-1H-cyclopenta[a]phenanthren-3-one |
InChI |
InChI=1S/C21H28O2/c1-3-20-11-9-17-16-8-6-15(22)13-14(16)5-7-18(17)19(20)10-12-21(20,23)4-2/h2,13,16-19,23H,3,5-12H2,1H3/t16-,17?,18?,19?,20-,21-/m0/s1/i5D2,6D2,13D,16D |
InChI Key |
WWYNJERNGUHSAO-PHHWYCLISA-N |
impurities |
Reported impurities include: 13-ethyl-3,4-diethynyl-18,19-dinor-17alpha-pregn-5-en-20- yn-3beta,4alpha,17-triol, 13-ethyl-3,4-diethynyl-18,19-dinor-17alpha-pregn-5-en-20-yn-3alpha,4alpha,17- triol 13-ethyl-18,19-dinor-17alpha-pregn-4-en-20-yn-17-ol, 13-ethyl-3-ethynyl-18,19-dinor-17alpha-pregna-3,5-dien-20-yn-17-ol, 13-ethyl-17-hydroxy-18,19-dinor-17alpha-pregna-4,8(14)- dien-20-yn-3-one and 13-ethyl-17-hydroxy-18,19-dinor-17alpha-pregn-5(10)-en-20-yn-3-one. |
SMILES |
CCC12CCC3C(C1CCC2(C#C)O)CCC4=CC(=O)CCC34 |
Isomeric SMILES |
[2H]C1=C2[C@](CC(C1=O)([2H])[2H])(C3CC[C@]4(C(C3CC2([2H])[2H])CC[C@]4(C#C)O)CC)[2H] |
Canonical SMILES |
CCC12CCC3C(C1CCC2(C#C)O)CCC4=CC(=O)CCC34 |
Appearance |
Solid powder |
boiling_point |
459.1 |
Color/Form |
Crystals from methanol Crystals from diethyl ether-hexane |
melting_point |
205-207 °C |
Other CAS No. |
6533-00-2 797-63-7 |
physical_description |
Solid |
Pictograms |
Health Hazard; Environmental Hazard |
Purity |
>98% (or refer to the Certificate of Analysis) |
shelf_life |
>2 years if stored properly |
solubility |
In water, 1.73 mg/L, temp not stated. |
storage |
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years). |
Synonyms |
18,19-dinorpregn-4-en-20-yn-3-one, 13-ethyl-17-hydroxy-, (17alpha)-(-)- Capronor Cerazet D Norgestrel D-Norgestrel duofem l Norgestrel l-Norgestrel Levonorgestrel Microlut Microval Mirena Norgeston NorLevo Norplant Norplant 2 Norplant-2 Norplant2 Plan B Vikela |
vapor_pressure |
1.0X10-9 mm Hg at 25 °C (est) 3.92X10-10 mm Hg at 25 °C (est) |
Origin of Product |
United States |
Molecular and Cellular Pharmacology of Levonorgestrel
Steroid Receptor Binding and Affinity Profiles
Levonorgestrel's pharmacological profile is characterized by its potent progestational and androgenic activity, with minimal to no estrogenic, glucocorticoid, or mineralocorticoid effects. wikipedia.orgtga.gov.au Its interaction with steroid receptors is a key determinant of its therapeutic actions and potential side effects. The compound binds with high affinity to sex hormone-binding globulin (SHBG) and to a lesser extent, albumin. tga.gov.audrugbank.com
A comparative analysis of this compound's relative binding affinity (RBA) to human steroid receptors reveals a distinct profile. pharmgkb.orgrndsystems.comtocris.com
Interactive Data Table: Relative Binding Affinity of this compound
Steroid Receptor | Relative Binding Affinity (%) (Compared to Natural Ligand) |
Progesterone Receptor (PR) | 323 |
Androgen Receptor (AR) | 58 |
Mineralocorticoid Receptor (MR) | 17 |
Glucocorticoid Receptor (GR) | 7.5 |
Estrogen Receptor (ER) | <0.02 |
This data represents the affinity of this compound for each receptor relative to the receptor's primary natural ligand (e.g., progesterone for PR, testosterone for AR). pharmgkb.org
Progesterone Receptor (PR) Interactions
This compound demonstrates a very high binding affinity for the progesterone receptor (PR), significantly exceeding that of endogenous progesterone. pharmgkb.orgnih.gov Studies have reported its relative binding affinity to be approximately 125% to 143% of progesterone for rabbit and human uterine PR, and up to 323% in other in vitro assays. pharmgkb.orgnih.gov This strong binding affinity underlies its potent progestational effects. nih.gov Upon binding, this compound acts as a PR agonist, mimicking the effects of progesterone. jscimedcentral.comkarger.com This interaction is central to its mechanism of action in contraception, which involves suppressing the mid-cycle surge of luteinizing hormone (LH), thereby inhibiting ovulation, and altering the endometrium and cervical mucus. drugbank.comnih.gov
Androgen Receptor (AR) Interactions
This compound is known to bind to the androgen receptor (AR) with considerable affinity, contributing to its androgenic properties. nih.govoup.com Its affinity for the AR is reported to be about 58% of that of testosterone. pharmgkb.org Other studies place its relative affinity at approximately 22% of dihydrotestosterone. glowm.com This interaction makes it a weak agonist of the AR. wikipedia.org The androgenic activity of this compound can lead to biochemical changes such as a decrease in sex hormone-binding globulin (SHBG) levels. wikipedia.orgglowm.com The metabolism of this compound to its 5α-dihydro derivative can enhance its binding affinity for the AR. nih.gov
Glucocorticoid Receptor (GR) Interactions
This compound exhibits a relatively low binding affinity for the glucocorticoid receptor (GR). wikipedia.orgtga.gov.au In vitro assays show its relative binding affinity is approximately 7.5% of that of cortisol. pharmgkb.org While some studies suggest it has some affinity for the GR, others indicate it possesses no significant glucocorticoid properties. tga.gov.aukarger.comdrugbank.com Research comparing various progestins found that this compound has a lower relative binding affinity for the GR compared to other progestins like medroxyprogesterone acetate (MPA). nih.gov It exhibits little to no activity in GR transactivation models, though some minor transrepressive activity has been observed. nih.gov
Mineralocorticoid Receptor (MR) Interactions
This compound's interaction with the mineralocorticoid receptor (MR) is characterized by a notable binding affinity despite a lack of significant mineralocorticoid or antimineralocorticoid activity. wikipedia.org Its relative binding affinity for the MR is reported to be around 17% of that of aldosterone. pharmgkb.org Another study noted its affinity is as much as 75% of aldosterone's, yet it does not translate into significant functional activity. wikipedia.org Comparative studies have shown that while this compound binds to the MR, it is a more potent MR antagonist for transactivation than the well-known antagonist spironolactone. nih.gov
Estrogen Receptor (ER) Interactions
This compound has a negligible binding affinity for the estrogen receptor (ER), with studies consistently showing an RBA of less than 0.1% and often cited as less than 0.02%. pharmgkb.orgrndsystems.comtocris.comnih.gov This lack of significant interaction means this compound is devoid of direct estrogenic activity. tga.gov.aunih.govjscimedcentral.com Its antiestrogenic effects are not due to ER antagonism but are rather a consequence of its potent progestational activity which can modify peripheral estrogenic effects and down-regulate estrogen receptors. tga.gov.au
Receptor Selectivity and Specificity Mechanisms
The selectivity of this compound is defined by its high affinity for the progesterone and androgen receptors and its comparatively low affinity for glucocorticoid, mineralocorticoid, and estrogen receptors. pharmgkb.orgdrugbank.com This profile is rooted in its chemical structure as a 19-nortestosterone derivative. jscimedcentral.comkarger.com The specificity of its action is further influenced by several factors:
Receptor-Level Selectivity: The ratio of its binding affinity for different receptors dictates its primary effects. For instance, its high PR-to-AR affinity ratio underscores its primary role as a progestin with secondary androgenic effects. nih.gov
Metabolism: The metabolic conversion of this compound in target tissues can alter its receptor interaction profile. For example, 5α-reduction increases its affinity for the AR while subsequent reduction at the C-3 position abolishes binding to PR, AR, and ER. nih.gov
Conformational Changes: The binding of this compound to a receptor induces a specific conformational change in the receptor protein. This change dictates whether the complex will recruit co-activators or co-repressors, thereby determining whether the effect is agonistic or antagonistic. kup.at
Tissue-Specific Factors: The ultimate biological response depends not only on receptor binding but also on the presence of co-regulators and other transcription factors within a specific cell type, leading to tissue-specific effects. kup.at
Intracellular Signaling Cascades and Transcriptional Regulation
The cellular actions of this compound are multifaceted, extending beyond the classical genomic pathways to include rapid, non-genomic signaling events and intricate regulation of gene expression. These mechanisms collectively contribute to its pharmacological effects.
Beyond its well-documented role as a nuclear receptor agonist, this compound can initiate rapid cellular responses that are independent of gene transcription. These non-genomic actions are often mediated through signaling cascades typically associated with membrane receptors. Evidence suggests that progestins, including this compound, can activate pathways such as the Src and mitogen-activated protein kinase (MAPK) signaling cascades. jscimedcentral.comiiarjournals.org This rapid signaling is thought to be primarily mediated by the classic progesterone receptor (PR) and estrogen receptor (ER), which can exist outside the nucleus and interact with signaling molecules at the cell membrane. jscimedcentral.com For instance, the interaction of PR with the SH3 domain of Src kinase can trigger the activation of the MAPK pathway. jscimedcentral.com Such non-genomic effects are not dependent on the synthesis of new proteins and can occur within minutes of cellular exposure to the hormone. The successful treatment of endometrial hyperplasia with a this compound-releasing intrauterine system, even with the downregulation of nuclear progesterone receptors, points to the clinical relevance of these non-genomic mechanisms. iiarjournals.org
This compound exerts significant control over cellular function by directly modulating the transcription of target genes. This genomic mechanism involves the binding of this compound to intracellular progesterone receptors, which then act as transcription factors to regulate the expression of specific genes. nih.gov
Studies on the human endometrium have shown that post-ovulatory administration of this compound leads to changes in the expression of a number of genes. For example, a study using cDNA microarrays on endometrial biopsies taken during the receptive period found that this compound administration resulted in minimal but detectable changes in the gene expression profile. bioscientifica.comresearchgate.net
Further research has identified specific genes that are modulated by this compound. In a study on Wistar rats, this compound altered the expression of genes in the ovary that are crucial for follicular development and oocyte quality. nih.gov Another study investigating the combined effects of ethinylestradiol and this compound in rats reported significant downregulation of antioxidant genes such as superoxide dismutase (SOD) and catalase (CAT) in the liver, brain, and kidney. The same study observed altered expression of apoptotic markers, with downregulation of B-cell lymphoma 2 (BCL-2) in the brain and kidney, and a significant elevation of Caspase 1 and 3 expression in the brain. scienceworldjournal.org
The table below summarizes some of the genes reported to be modulated by this compound.
Gene | Tissue/Cell Type | Effect of this compound | Study Focus |
SOD | Rat Liver, Brain, Kidney | Downregulation | Antioxidant Response |
CAT | Rat Liver, Brain, Kidney | Downregulation | Antioxidant Response |
BCL-2 | Rat Brain, Kidney | Downregulation | Apoptosis |
Caspase 1 | Rat Brain | Upregulation | Apoptosis |
Caspase 3 | Rat Brain | Upregulation | Apoptosis |
CRIP1 | Human Endometrium | Modulation | Immune Response |
Various | Rat Ovary | Altered Expression | Follicular Development |
The transcriptional regulatory effects of this compound are also mediated through its interaction with other transcription factors, a key example being the activator protein-1 (AP-1) complex, of which c-JUN is a primary component. oup.comnih.gov Steroid hormone action can be modulated by complex protein-protein interactions between steroid receptors and transcription-related proteins like AP-1. oup.com
In the human endometrium, the intrauterine release of this compound has been shown to maintain a constant expression of c-JUN. oup.comnih.gov This is significant because it suggests that this compound can exert its progestational effects even in the absence of progesterone receptors, potentially through the c-JUN/AP-1 signaling pathway. oup.com It is hypothesized that this compound may activate progesterone target genes either through the c-JUN/AP-1 pathway alone or in conjunction with a steroid receptor other than the progesterone receptor. oup.com This interaction provides a mechanism for the diverse and sometimes PR-independent effects of this compound observed in target tissues.
This compound is implicated in the modulation of key intracellular signaling pathways, including the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. jscimedcentral.comnih.gov While direct evidence specifically for this compound is still emerging, the broader class of progestins has been shown to activate these cascades. The non-genomic actions of progestins are often funneled through these pathways. jscimedcentral.com
The MAPK signaling pathway is a crucial regulator of various cellular processes such as cell proliferation, differentiation, and apoptosis. thermofisher.commdpi.com The activation of the Src/MAPK pathway is a known non-genomic effect of progestins. jscimedcentral.com Similarly, the PI3K/AKT/mTOR pathway is central to cell cycle regulation, proliferation, and survival. wikipedia.org Clinical studies have explored the combination of this compound with PI3K pathway inhibitors in the treatment of certain cancers, suggesting a functional link between progestin signaling and this pathway. nih.gov The activation of these signaling cascades represents a critical layer of cellular regulation by this compound, complementing its direct genomic actions.
Interaction with Transcription Factors (e.g., c-JUN/AP-1) [6, 15]
Enzymatic Biotransformation and Metabolite Characterization
The metabolic fate of this compound in the body is a key determinant of its activity and clearance. The liver is the primary site of biotransformation, where this compound undergoes a series of enzymatic reactions. wikipedia.orgmedicines.org.uk
The metabolism of this compound follows established pathways for steroid compounds. The main enzymatic processes involved are reduction, hydroxylation, and conjugation. nih.govwikipedia.orgwikidoc.org
Reduction: A primary metabolic step is the reduction of the Δ4-3-oxo group in the A ring of the steroid nucleus. wikidoc.org This leads to the formation of tetrahydrothis compound metabolites, with the main forms being 3α,5β-tetrahydrothis compound and to a lesser extent, 3α,5α-tetrahydrothis compound. nih.gov
Hydroxylation: this compound undergoes hydroxylation at several positions, primarily at the 2α, 1β, and 16β carbons. wikidoc.orgmedscape.comfda.gov The cytochrome P450 enzyme system, particularly CYP3A4, is the main driver of these hydroxylation reactions. medicines.org.uk This results in the formation of hydroxylated metabolites such as 16β-hydroxythis compound. nih.govdrugbank.com
Conjugation: Following reduction and hydroxylation, the metabolites are conjugated to increase their water solubility and facilitate their excretion. The two main conjugation reactions are sulfation and glucuronidation. nih.govwikipedia.org Most of the metabolites circulating in the blood are sulfate conjugates, particularly sulfates of 3α,5β-tetrahydro-levonorgestrel. wikidoc.orgfda.gov In contrast, excretion occurs predominantly in the form of glucuronide conjugates in the urine. wikidoc.orgmedsafe.govt.nz Some of the parent this compound also circulates as a 17β-sulfate. wikidoc.orgfda.gov To date, no pharmacologically active metabolites of this compound have been identified. drugbank.commedsafe.govt.nz
The table below provides a summary of the major metabolites of this compound.
Metabolite | Metabolic Pathway | Form in Circulation/Excretion |
3α,5β-tetrahydrothis compound | Reduction | Circulates as sulfate conjugates; Excreted as glucuronide conjugates |
3α,5α-tetrahydrothis compound | Reduction | Minor metabolite |
16β-hydroxythis compound | Hydroxylation | Identified as a metabolite |
Sulfate conjugates | Conjugation | Predominant form in blood |
Glucuronide conjugates | Conjugation | Predominant form in urine |
Role of Cytochrome P450 Enzymes (e.g., CYP3A4/5)
The metabolism of this compound is predominantly a hepatic process, with the cytochrome P450 (CYP) system playing a crucial role. scielo.org.co Specifically, enzymes of the CYP3A subfamily, CYP3A4 and to a lesser extent CYP3A5, are the primary catalysts for the oxidative metabolism of this compound. scielo.org.codrugbank.comnih.govnih.gov These enzymes are responsible for the initial hydroxylation reactions that modify the this compound molecule, preparing it for subsequent conjugation and excretion. nih.govfda.gov The most significant metabolic pathway involves the hydroxylation at positions 2α, 1β, and 16β, along with the reduction of the Δ4-3-oxo group. nih.govfda.gov
The central role of CYP3A4 in this compound clearance means that its plasma concentrations can be significantly affected by co-administration with drugs that induce or inhibit this enzyme system. www.gov.uk Concomitant use of potent CYP3A4 inducers, such as certain antiretrovirals (e.g., efavirenz), anticonvulsants (e.g., carbamazepine, phenytoin), and herbal products like St. John's Wort, can accelerate the metabolism of this compound. www.gov.ukwikipedia.orgmedsafe.govt.nz This increased metabolic rate leads to lower systemic exposure and reduced plasma concentrations of the compound. www.gov.uk For instance, the administration of efavirenz has been shown to reduce the plasma area under the curve (AUC) of this compound by approximately 50%. www.gov.ukmedsafe.govt.nz This interaction is a critical consideration in clinical pharmacology, as the efficacy of this compound-containing products can be compromised. www.gov.uk The influence of CYP3A4 inducers can persist for up to four weeks after their cessation. www.gov.uk
Conversely, while not as commonly highlighted in the context of this compound, inhibitors of CYP3A4 would be expected to slow its metabolism, potentially leading to higher plasma concentrations. Genetic variations (polymorphisms) within the genes encoding for CYP3A4 and CYP3A5 can also contribute to inter-individual differences in this compound pharmacokinetics, further illustrating the pivotal role of these enzymes. scielo.org.conih.gov
Glucuronidation and Sulfation Pathways
Following oxidative metabolism by cytochrome P450 enzymes, this compound and its phase I metabolites undergo phase II conjugation reactions, primarily glucuronidation and sulfation. wikipedia.orgpharmgkb.org These processes increase the water solubility of the metabolites, facilitating their elimination from the body. medsafe.govt.nz
The primary enzymes involved in these conjugation reactions include UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs). pharmgkb.orgresearchgate.net While the complete metabolic map is complex, the consistent finding is that conjugation, especially glucuronidation for excretion and sulfation for circulation, represents the terminal steps in the metabolic clearance of this compound. drugbank.comdrugbank.com
Identification and Biological Activity of Major Metabolites
The biotransformation of this compound results in the formation of several metabolites. The main metabolic pathways are the reduction of the A-ring and hydroxylation. nih.govwikipedia.org This leads to the formation of various tetrahydro and hydroxylated derivatives. drugbank.com
The major circulating metabolite identified in plasma is 3α, 5β-tetrahydrothis compound, which is present predominantly as a sulfate conjugate. drugbank.comfda.govfda.gov Significant amounts of this unconjugated metabolite are also found in serum. pharmgkb.orgfda.gov Other identified metabolites include smaller quantities of 3α, 5α-tetrahydrothis compound and 16β-hydroxythis compound. drugbank.comfda.gov The excretion products found in urine are primarily glucuronide conjugates of these metabolites. medsafe.govt.nzfda.gov
A crucial aspect of this compound's pharmacology is that its metabolites are considered to be pharmacologically inactive. medsafe.govt.nzfda.gov Extensive research and clinical reviews have not identified any metabolites that contribute significantly to the progestogenic or other hormonal effects of the parent compound. medsafe.govt.nzfda.gov The biological activity is therefore attributed solely to the parent this compound molecule.
Table 1: Major Metabolites of this compound
Metabolite | Common Form in Circulation | Primary Excretion Form | Biological Activity |
---|---|---|---|
3α, 5β-tetrahydrothis compound | Sulfate conjugate fda.govfda.gov | Glucuronide conjugate medsafe.govt.nzfda.gov | Inactive medsafe.govt.nzfda.gov |
16β-hydroxythis compound | Present in smaller amounts drugbank.comfda.gov | Glucuronide conjugate medsafe.govt.nz | Inactive medsafe.govt.nzfda.gov |
3α, 5α-tetrahydrothis compound | Present in smaller amounts drugbank.comfda.gov | Glucuronide conjugate medsafe.govt.nz | Inactive medsafe.govt.nzfda.gov |
Protein Binding and Distribution Mechanisms at a Molecular Level
This compound is extensively bound to plasma proteins, with total protein binding reported to be between 97.5% and 99%. drugbank.comfda.gov This high degree of binding significantly influences its distribution, clearance, and bioavailability. The binding occurs primarily with two proteins: sex hormone-binding globulin (SHBG) and, to a lesser extent, serum albumin. drugbank.commedsafe.govt.nz Only a small fraction, approximately 1.1% to 2.1%, of the total this compound in serum exists as the free, unbound steroid, which is the pharmacologically active form. medsafe.govt.nznih.govnih.gov
Sex Hormone-Binding Globulin (SHBG) Interaction
This compound binds with high affinity and specificity to sex hormone-binding globulin (SHBG). karger.comtga.gov.au This high-affinity interaction means that a substantial portion of circulating this compound, typically ranging from 42% to 69%, is specifically bound to SHBG. nih.govnih.gov The concentration of SHBG in the serum is a key determinant of this compound's pharmacokinetics. tga.gov.au
The interaction is dynamic; this compound itself influences SHBG concentrations. Administration of this compound alone can lead to a decrease in serum SHBG levels. nih.govkarger.comdrugbank.com This reduction in SHBG concentration leads to a corresponding decrease in the total amount of this compound bound to it, which in turn increases the proportion of this compound that is free or bound to albumin. nih.gov This dynamic interplay results in non-linear pharmacokinetics, where changes in SHBG levels directly impact the clearance and distribution of total this compound. nih.govtga.gov.au For example, a decrease in SHBG leads to an increase in the total clearance of this compound, although the clearance of the unbound, active drug may remain unchanged. nih.gov This SHBG-suppressing effect can also increase the free fraction of endogenous androgens like testosterone, which also bind to SHBG. karger.comscite.aikarger.com
Albumin Binding
In addition to its high-affinity binding to SHBG, this compound also binds non-specifically and with lower affinity to serum albumin. drugbank.commedsafe.govt.nztga.gov.au While the affinity is lower, the high concentration of albumin in the plasma makes it a significant carrier for this compound. researchgate.net The fraction of this compound bound to albumin typically ranges from approximately 30% to 56%. nih.govnih.gov
Table 2: Distribution of this compound in Serum
Binding Component | Percentage of Total Serum this compound (Approximate Range) | Key Characteristics |
---|---|---|
Free (Unbound) | 1.0% - 2.1% nih.govnih.govnih.gov | Pharmacologically active fraction. |
Bound to SHBG | 42% - 69% nih.govnih.gov | High-affinity, specific binding. Levels are influenced by this compound. nih.govdrugbank.com |
Bound to Albumin | 30% - 56% nih.govnih.gov | Lower-affinity, non-specific binding. tga.gov.au |
Structure-activity Relationship Sar and Computational Modeling
Identification of Key Structural Determinants for Biological Activity
The progestogenic and androgenic activities of levonorgestrel are dictated by specific structural motifs that facilitate its binding to the progesterone receptor (PR) and androgen receptor (AR). nih.gov this compound is a derivative of 19-nortestosterone. mdpi.compharmgkb.org
Key structural features essential for its biological activity include:
The Steroid Backbone: The fundamental four-ring steroid structure provides the necessary scaffold for interaction with the ligand-binding domain (LBD) of nuclear receptors.
17α-Ethynyl Group: This group is a critical determinant of oral activity and enhances progestational potency.
13-Ethyl Group: This substituent, characteristic of this compound, plays a significant role in its high potency. rcsb.org Mutagenesis analysis has identified Met909 in helix 12 of the progesterone receptor as a key residue for activation by progestins with a 13-ethyl substituent. rcsb.org
A-Ring Conformation: Reduction of the A-ring, specifically 5α-reduction, has been shown to modulate receptor affinity. The resulting metabolite, 5α-dihydrothis compound (5α-LNG), exhibits a decreased affinity for the progesterone receptor but an enhanced binding affinity for the androgen receptor compared to the parent compound. nih.gov Further reduction at the C-3 position abolishes binding activity to both PR and AR. nih.gov
The pharmacophore for progestogenic activity generally includes the steroid nucleus with specific hydrogen bond donors and acceptors, and hydrophobic features that align with the receptor's binding pocket.
Conformational Analysis and Molecular Dynamics Simulations
The flexibility of the this compound molecule and its ability to adopt specific conformations are crucial for its interaction with biological targets. fiveable.me Conformational analysis, through techniques like X-ray crystallography and computational methods, helps to understand the spatial arrangement of the molecule. fiveable.meresearchgate.net
Molecular dynamics (MD) simulations provide a dynamic view of the conformational landscape of this compound and its complexes with receptors. uconn.eduresearchgate.netscilit.comx-mol.net These simulations can reveal:
The stability of the ligand-receptor complex over time. researchgate.net
The flexibility of different parts of the this compound molecule and the receptor. researchgate.netresearchgate.net
The role of solvent molecules in the binding process.
Studies have employed MD simulations to investigate the stability of this compound within the progesterone receptor binding site, often showing stable interactions and minimal conformational changes over the simulation period. researchgate.netnih.gov These computational approaches are valuable for understanding how structural modifications might impact the conformational preferences and, consequently, the biological activity of the molecule.
Ligand-Receptor Docking and Interaction Studies
Molecular docking is a computational technique used to predict the preferred orientation of a ligand when bound to a receptor. uchicago.edujabonline.in Docking studies of this compound with the progesterone and androgen receptors have provided detailed insights into the specific interactions that stabilize the complex. uchicago.edubvsalud.org
Key interactions identified through docking studies include:
Hydrogen Bonding: The hydroxyl and ketone groups on the this compound molecule can form hydrogen bonds with specific amino acid residues in the receptor's binding pocket.
Hydrophobic Interactions: The steroidal backbone of this compound fits into a predominantly hydrophobic pocket within the ligand-binding domain of the receptors.
The crystal structure of the human progesterone receptor ligand-binding domain in complex with this compound has been solved, providing a precise experimental basis for these interaction studies. rcsb.org This structural information confirms the orientation of this compound within the binding pocket and highlights the key residues involved in its binding and the subsequent activation of the receptor. rcsb.org Such studies are fundamental for understanding the agonistic activity of this compound at the progesterone receptor. rcsb.orguchicago.edu
Quantitative Structure-Activity Relationship (QSAR) Modeling
Quantitative Structure-Activity Relationship (QSAR) modeling is a computational approach that aims to correlate the chemical structure of compounds with their biological activity using mathematical models. jocpr.comwikipedia.org For progestins like this compound, QSAR studies have been employed to understand the relationship between molecular descriptors (e.g., electronic, steric, and hydrophobic properties) and their receptor binding affinity. scielo.brkg.ac.rsutrgv.edudntb.gov.ua
These models can:
Predict the biological activity of novel, untested compounds. wikipedia.org
Identify the most important physicochemical properties for high-affinity binding. jocpr.com
Guide the design of new molecules with improved potency. jocpr.com
Table 1: Examples of Descriptors Used in QSAR Studies of Steroids
Descriptor Type | Examples | Relevance to Biological Activity |
---|---|---|
Electronic | Mulliken atomic charges, HOMO/LUMO energies | Influence electrostatic interactions and reactivity. scielo.br |
Steric | Molecular volume, surface area | Determine the fit of the molecule in the receptor pocket. jocpr.com |
Hydrophobic | LogP (octanol-water partition coefficient) | Relate to the molecule's ability to cross cell membranes and interact with hydrophobic pockets. jocpr.com |
Topological | Connectivity indices | Describe the branching and shape of the molecule. scielo.br |
Rational Design Principles for Novel Steroid Scaffolds
The insights gained from SAR, conformational analysis, docking, and QSAR studies provide a foundation for the rational design of novel steroid scaffolds with tailored biological activities. kg.ac.rsmdpi.comresearchgate.netdntb.gov.ua The goal is to design molecules with improved potency, selectivity, and pharmacokinetic profiles.
Key principles in the rational design of novel progestins include:
Bioisosteric Replacement: Replacing certain functional groups with others that have similar physical or chemical properties to enhance activity or reduce side effects.
Scaffold Hopping: Designing novel core structures that maintain the essential pharmacophoric features required for receptor binding but have a different chemical backbone.
Structure-Based Design: Utilizing the three-dimensional structure of the target receptor to design ligands that fit optimally into the binding site. fiveable.me
By applying these principles, researchers aim to develop new generations of progestins. For example, modifications to the steroid backbone or the introduction of new substituents can be explored to modulate the interaction with the progesterone and androgen receptors, potentially leading to compounds with a more favorable therapeutic index. nih.gov
Advanced Analytical Methodologies in Levonorgestrel Research
Chromatographic Techniques for Research Sample Analysis
Chromatography, a cornerstone of separation science, is extensively used for the analysis of levonorgestrel. High-Performance Liquid Chromatography (HPLC), particularly in its reversed-phase mode, is a dominant technique. For enhanced sensitivity and specificity, especially in complex biological samples, chromatography is often coupled with mass spectrometry.
High-Performance Liquid Chromatography (HPLC)
High-Performance Liquid Chromatography (HPLC) is a widely employed technique for the routine analysis and quality control of this compound in pharmaceutical products. nih.gov Reversed-phase HPLC (RP-HPLC) is the most common approach, utilizing a non-polar stationary phase, such as C18 or C8, and a polar mobile phase. nih.govresearchgate.net
The mobile phase typically consists of a mixture of acetonitrile and water, with the ratio adjusted to optimize the separation and retention time of this compound. nih.govijpra.com For instance, a mobile phase of acetonitrile and water in a 50:50 (v/v) ratio has been used with a C18 column, resulting in a retention time of approximately 8.5 minutes. nih.gov Increasing the acetonitrile concentration can decrease the retention time. nih.gov Other mobile phase compositions, such as acetonitrile, methanol, and water mixtures, have also been reported. pharmainfo.in Detection is commonly performed using a UV detector, with the wavelength set at or near the absorption maximum of this compound, which is around 241-247 nm. nih.govtsijournals.comejbps.com
The performance of an HPLC method is evaluated through various validation parameters, including linearity, precision, accuracy, and robustness, as per guidelines from the International Conference on Harmonisation (ICH). researchgate.net Linearity is established by analyzing a series of standard solutions over a defined concentration range. For example, a linear relationship for this compound has been demonstrated in ranges such as 2.6–15.6 µg/ml and 20-70 µg/ml. ijpra.comnih.gov The accuracy of the method is often assessed by recovery studies, with recovery rates between 98% and 102% being considered acceptable. ijpra.com Precision is determined by the repeatability of the measurements, with a relative standard deviation (RSD) of less than 2% indicating good precision. nih.gov
Table 1: Examples of HPLC Methods for this compound Analysis
Stationary Phase | Mobile Phase | Flow Rate (mL/min) | Detection Wavelength (nm) | Retention Time (min) | Reference |
Luna C18 (150 x 4.6 mm, 5 µm) | Acetonitrile:Water (50:50, v/v) | 1.0 | 241 | 8.5 | nih.gov |
Hypersil ODS C8 (125 x 4.6 mm, 5 µm) | Water:Acetonitrile (50:50, v/v) | 1.3 | 242 | ~4.5 | researchgate.net |
Analytica brownee C-18 (150x4.6 mm, 3µm) | Acetonitrile:Water (75:25, v/v) | 0.8 | 230 | Not Specified | ijpra.com |
Kromasil C8 (150 mm x 4.6 mm, 5 µm) | Acetonitrile:Deionized Water (60:40, v/v) | 1.0 | 247 | 4.9 | tsijournals.com |
Phenomenex C18 (250 mm x 4.6 mm, 5 µm) | Acetonitrile:Water (80:20, v/v) | 1.0 | 241 | 2.47 | neliti.com |
Agilent Eclipsed XDB C18 (150 x 4.6 mm, 3.5 µm) | Acetonitrile:DI Water (70:30, v/v) | 1.5 | 245 | Not Specified | ejbps.com |
Liquid Chromatography-Mass Spectrometry (LC-MS/MS)
For the determination of this compound in complex biological matrices such as human plasma, Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) is the method of choice due to its high sensitivity and selectivity. ijipls.co.inresearchgate.netnih.gov This technique couples the separation power of liquid chromatography with the precise detection capabilities of tandem mass spectrometry.
Sample preparation for LC-MS/MS analysis often involves protein precipitation or liquid-liquid extraction to remove interferences from the plasma matrix. ijipls.co.insilae.it Solid-phase extraction (SPE) is another common technique used to clean up and concentrate the sample before analysis. ijipls.co.in To improve ionization efficiency and sensitivity, chemical derivatization of this compound may be employed. omicsonline.orgomicsonline.org
The chromatographic separation is typically achieved on a reversed-phase column, such as a C18 column. researchgate.netomicsonline.org The mobile phase often consists of a mixture of an organic solvent like acetonitrile or methanol and an aqueous solution containing a modifier such as formic acid or ammonium hydroxide to facilitate ionization. ijipls.co.inresearchgate.net
In the mass spectrometer, this compound is typically ionized using electrospray ionization (ESI) in the positive ion mode. ijipls.co.inijraset.com The protonated molecule [M+H]+ is then subjected to collision-induced dissociation in the collision cell, and specific fragment ions are monitored. For this compound, a common mass transition monitored is m/z 313.4 → 109.20. ijipls.co.in An internal standard, often a deuterated analog like this compound-d6, is used to ensure accuracy and precision. ijipls.co.inijraset.com
LC-MS/MS methods for this compound are validated for parameters including linearity, accuracy, precision, and the lower limit of quantification (LLOQ). ijipls.co.inresearchgate.net These methods can achieve very low LLOQs, often in the picogram per milliliter (pg/mL) range, making them suitable for pharmacokinetic studies. omicsonline.orgnih.gov For instance, an LLOQ of 100 pg/mL has been reported for this compound in human plasma. nih.gov
Table 2: Key Parameters in LC-MS/MS Methods for this compound
Sample Matrix | Extraction Method | Chromatographic Column | Ionization Mode | Mass Transition (m/z) | LLOQ | Reference |
Human Plasma | 2% Ammonia in Methanol | Vertisep BDS C18 | Positive Turbospray | 313.40 → 109.20 | 0.5 ng/mL | ijipls.co.in |
Human Plasma | Solid-Phase Extraction | Kromasil C18 (50 x 4.6 mm) | Not Specified | 328.2 → 90.9 | 100 pg/mL | omicsonline.orgomicsonline.org |
Rat Plasma | Liquid-Liquid Extraction | Luna C18(2) (50x2.0mm, 3µM) | Not Specified | Not Specified | 0.5 ng/mL | nih.gov |
Human Plasma | Liquid-Liquid Extraction | Fortis™ C18 (100 mm × 2.1 mm, 3 µm) | Not Specified | Not Specified | 0.265 ng/mL | researchgate.net |
Human Plasma | Protein Precipitation & LLE | Not Specified | Positive ESI | Not Specified | 100 pg/mL | nih.gov |
Gas Chromatography-Mass Spectrometry (GC-MS)
Gas Chromatography-Mass Spectrometry (GC-MS) is another powerful technique for the analysis of steroid hormones, including this compound. nih.govrestek.com This method is particularly useful for analyzing volatile and thermally stable compounds. For less volatile compounds like steroids, derivatization is often necessary to improve their chromatographic properties and thermal stability. restek.com Common derivatizing agents include methoxylamine HCl and trimethylsilyl imidazole. restek.com
In GC-MS analysis, the sample is first vaporized and then separated in a capillary column. A column with a 100% dimethylpolysiloxane stationary phase is often used for steroid analysis due to its high-temperature stability. restek.com The separated components then enter the mass spectrometer, where they are ionized and detected.
GC-MS has been utilized for the detection of this compound in environmental samples, such as surface water, highlighting its utility in monitoring for the presence of these compounds as potential endocrine disruptors. nih.gov
Spectroscopic and Electrochemical Methods
Beyond chromatography, spectroscopic and electrochemical techniques play a vital role in the structural elucidation and electrochemical characterization of this compound.
Nuclear Magnetic Resonance (NMR) and Mass Spectrometry for Structural Elucidation
Nuclear Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS) are indispensable tools for the structural elucidation of this compound and its related impurities. NMR, particularly ¹H and ¹³C NMR, provides detailed information about the molecular structure, including the stereochemistry of the compound. Mass spectrometry, especially high-resolution mass spectrometry (HRMS), confirms the exact mass and elemental composition of the molecule and provides fragmentation patterns that aid in structure identification. For instance, in the mass spectrum of this compound, a product ion scan can reveal characteristic fragments, such as the transition from m/z 313.3 to 245.3. researchgate.net
Voltammetric Techniques for Electrochemical Characterization
Voltammetric techniques are employed to investigate the electrochemical behavior of this compound and for its quantitative determination. tandfonline.comtandfonline.com These methods are based on measuring the current that flows in an electrochemical cell as a function of the applied potential.
The electrochemical reduction of this compound has been studied using techniques like cyclic voltammetry. nih.gov At a hanging mercury drop electrode, this compound exhibits a single two-electron irreversible cathodic peak, which is attributed to the reduction of the 3-keto-delta-4-group in the A-ring of the molecule. nih.gov
More recently, square-wave adsorptive stripping voltammetry (SWAdSV) using a silver solid amalgam electrode fabricated with nanoparticles has been developed for the quantification of this compound. tandfonline.com This method demonstrated a cathodic peak for this compound at approximately -1.41 V. The reduction process was determined to be irreversible and controlled mainly by adsorption, involving two protons and two electrons. tandfonline.com This voltammetric method was successfully applied to quantify this compound in pharmaceutical formulations and urine samples, offering a less toxic alternative to mercury-based electrodes. tandfonline.com The method showed a linear response in the concentration range of 5.03 × 10⁻⁷ mol L⁻¹ to 1.01 × 10⁻⁵ mol L⁻¹, with a limit of detection (LOD) of 9.09 × 10⁻⁸ mol L⁻¹. tandfonline.comtandfonline.com
Bioanalytical Method Development for In Vitro and Pre-clinical Studies
The development of robust bioanalytical methods is fundamental for quantifying this compound (LNG) in various biological matrices during in vitro and pre-clinical research. These methods are essential for a range of studies, including metabolic profiling, pharmacokinetic assessments, and the characterization of drug release from novel delivery systems. The choice of analytical technique often depends on the required sensitivity, the complexity of the biological matrix, and the specific research question.
High-performance liquid chromatography (HPLC) and its more advanced counterpart, ultra-high-performance liquid chromatography (UPLC), often coupled with mass spectrometry (MS), are the predominant techniques for this compound analysis. For in vitro studies, such as those evaluating drug release from implants, reversed-phase HPLC (RP-HPLC) with UV detection is frequently employed. nih.gov A typical method might use a C18 column and a mobile phase consisting of a mixture of acetonitrile and water. nih.govijpda.org
For pre-clinical pharmacokinetic studies, which often involve low concentrations of LNG in complex matrices like plasma or serum, higher sensitivity and selectivity are required. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the gold standard. researchgate.netomicsonline.org These methods offer sub-nanogram per milliliter detection limits, which are necessary for accurately characterizing the pharmacokinetic profile of this compound. researchgate.net
Sample preparation is a critical step in the development of these bioanalytical methods. The goal is to isolate LNG from interfering components in the biological matrix. Common techniques include:
Liquid-Liquid Extraction (LLE) : This technique uses organic solvents like hexane, ethyl acetate, or diethyl ether to extract LNG from aqueous samples such as plasma or in vitro release media. nih.govresearchgate.netfda.gov LLE is cost-effective and can provide high recovery rates. thieme-connect.com
Solid-Phase Extraction (SPE) : SPE offers a more automated and often cleaner extraction compared to LLE, and it is widely used in LC-MS/MS method development for LNG. omicsonline.org
Protein Precipitation : This is a simpler but potentially less clean method used to remove proteins from plasma or serum samples before analysis.
In some pre-clinical contexts, other methods like radioimmunoassay (RIA) have been utilized. fda.gov For instance, in studies involving specific intrauterine systems, LNG concentrations in serum were determined using a validated RIA method, which involves extraction with diethyl ether and the use of tritium-labeled LNG. fda.gov The development process also involves optimizing chromatographic conditions, such as the mobile phase composition, flow rate, and column temperature, to achieve optimal separation and peak shape. nih.gov
The table below summarizes various bioanalytical methods developed for this compound analysis in research settings.
Table 1: Examples of Bioanalytical Methods for this compound Research
Analytical Technique | Sample Matrix | Extraction Method | Key Methodological Details | Application | Reference |
---|---|---|---|---|---|
RP-HPLC-UV | In vitro release medium, Human skin homogenate | Liquid-Liquid Extraction (LLE) with ethyl acetate | C18 column; Mobile Phase: Acetonitrile/Water; UV Detection: 225-248 nm | Characterizing drug release from intradermal contraceptives | nih.gov |
RP-HPLC | Silicone-based intrauterine device | Solvent extraction with Tetrahydrofuran (THF) | C18 column; Mobile Phase: Acetonitrile/Water (50:50, v/v); UV Detection: 241 nm | In-process quality control and stability assays | nih.govnih.gov |
LC-MS/MS | Human Plasma | LLE with hexane-ethyl acetate | Hypersil BDS C18 column; ESI source; Run time: 2.0 min | Bioequivalence study | researchgate.net |
UPLC-MS/MS | Human Plasma | Solid-Phase Extraction (SPE) | Kromasil C18 column; Gradient flow with acetonitrile and 0.1% formic acid | Pharmacokinetic study | omicsonline.org |
| Radioimmunoassay (RIA) | Human Serum | LLE with diethyl ether | Utilized specific antiserum and tritium-labeled LNG | Pre-clinical pharmacokinetic/pharmacodynamic studies | fda.gov |
Method Validation and Quality Assurance in Research Contexts
Method validation is a critical component of quality assurance in this compound research, ensuring that the analytical methods used are reliable, reproducible, and accurate for their intended purpose. nih.gov Validation is performed according to established guidelines, such as those from the International Council for Harmonisation (ICH), and demonstrates that the method is suitable for providing meaningful data. ijpda.orgresearchgate.net Key validation parameters include specificity, linearity, sensitivity, precision, accuracy, and stability. who.int
Specificity and Selectivity : The method must be able to unequivocally assess the analyte in the presence of other components that may be expected to be present, such as metabolites, impurities, or matrix components. who.int In chromatography, this is demonstrated by the absence of interfering peaks at the retention time of this compound and its internal standard. researchgate.net
Linearity : This parameter establishes the relationship between the instrument response and the known concentration of the analyte. researchgate.net A linear range is determined by analyzing a series of calibration standards, and the correlation coefficient (r or r²) is calculated. For this compound assays, linearity is typically established over a wide concentration range, with correlation coefficients of 0.99 or greater being the standard for acceptance. researchgate.netomicsonline.orgnih.gov
Sensitivity : The sensitivity of a bioanalytical method is determined by its Lower Limit of Quantification (LLOQ) and Limit of Detection (LOD). The LLOQ is the lowest concentration of the analyte that can be quantitatively determined with acceptable precision and accuracy. jddtonline.info For LC-MS/MS methods designed to measure LNG in plasma, LLOQs are often in the picogram to low nanogram per milliliter range (e.g., 0.05 ng/mL to 0.25 ng/mL). researchgate.net The LOD is the lowest concentration that can be detected but not necessarily quantified with accuracy. ijpda.org
Precision : Precision measures the degree of agreement among individual test results when the procedure is applied repeatedly to multiple samplings of a homogeneous sample. It is usually expressed as the relative standard deviation (%RSD). It is assessed at two levels:
Intra-day precision (Repeatability) : Assesses variability within the same day. ijpda.org
Inter-day precision (Intermediate Precision) : Assesses variability on different days. ijpda.org For this compound bioanalytical methods, acceptance criteria for precision are typically an RSD of less than 15%. researchgate.net
Accuracy : Accuracy reflects the closeness of the mean test results obtained by the method to the true value. It is expressed as the percent relative error (%RE) or as a percentage of recovery. ijpda.orgomicsonline.org Acceptance criteria for accuracy in bioanalytical assays are often within ±15% of the nominal value (or ±20% at the LLOQ). researchgate.net Recovery experiments, which measure the efficiency of the extraction process, are also a key part of assessing accuracy. nih.govresearchgate.net
Stability : Stability evaluations are conducted to ensure that the concentration of this compound does not change during sample collection, handling, storage, and analysis. This involves testing the stability of the analyte in the biological matrix under various conditions, such as freeze-thaw cycles, short-term storage at room temperature, and long-term storage at frozen temperatures. who.int
The table below provides examples of validation parameters reported in studies developing analytical methods for this compound.
Table 2: Summary of Validation Parameters from this compound Analytical Methods
Parameter | Method | Reported Value/Range | Reference |
---|---|---|---|
Linearity Range | LC-MS/MS | 0.25 - 90 ng/mL (r ≥ 0.99) | researchgate.net |
UPLC-MS/MS | 100 - 30,000 pg/mL (r ≥ 0.99) | omicsonline.org | |
RP-HPLC | 2.6 - 15.6 µg/mL (r = 0.9999) | nih.govnih.gov | |
RP-HPLC | 1 - 12 µg/mL | ijpda.org | |
LLOQ | LC-MS/MS | 0.25 ng/mL | researchgate.net |
HPLC-UV | 0.005 µg/mL | nih.gov | |
LOD & LOQ | RP-HPLC | LOD: 0.29 µg/ml; LOQ: 0.88 µg/ml | ijpda.org |
Precision (%RSD) | LC-MS/MS | Intra-batch: 3.7 - 10.2%; Inter-batch: 5.1 - 12.9% | researchgate.net |
UPLC-MS/MS | < 6.50% | omicsonline.org | |
RP-HPLC | < 2% | nih.govnih.gov | |
Accuracy (%RE or % Recovery) | UPLC-MS/MS | Within ± 5% (%RE) | omicsonline.org |
RP-HPLC | 99.78 - 100.0% (% Recovery) | nih.govnih.gov |
Mechanistic Research Applications and Theoretical Frameworks
Levonorgestrel as a Research Probe in Steroid Hormone Biology
This compound's utility as a research probe stems from its specific interactions with steroid hormone receptors. It is a potent agonist of the progesterone receptor (PR) and also exhibits a high affinity for the androgen receptor (AR). nih.govpharmgkb.orgdrugbank.com Conversely, it has negligible affinity for the estrogen receptor (ER). pharmgkb.org This selective binding profile allows researchers to investigate the distinct and overlapping functions of progestogenic and androgenic signaling pathways.
In laboratory settings, this compound is employed to understand the molecular underpinnings of processes regulated by progesterone, such as ovulation, endometrial development, and cervical mucus viscosity. tandfonline.combritannica.com By observing the effects of this compound on cellular and tissue models, scientists can infer the mechanisms through which endogenous progesterone and other progestins exert their physiological effects. For instance, studies have used this compound to demonstrate the suppression of gonadotropin-releasing hormone (GnRH) from the hypothalamus, which in turn inhibits the luteinizing hormone (LH) surge necessary for ovulation. drugbank.com
Furthermore, the study of this compound and its metabolites helps to elucidate the broader field of steroid biochemistry and endocrinology. ontosight.ai Research into its metabolism, including its conversion to A-ring reduced derivatives like 5α-dihydrothis compound, provides insights into how the structure of a steroid influences its receptor binding affinity and subsequent biological activity. nih.gov Specifically, the 5α-reduction of this compound enhances its binding to the androgen receptor, highlighting a key metabolic pathway that can modulate a synthetic steroid's hormonal effects. nih.gov
In Vitro Cellular Models for Mechanistic Investigation
In vitro cellular models are indispensable for the detailed mechanistic investigation of this compound's action at the cellular and molecular level. These models allow for controlled experiments that can isolate specific cellular responses to this compound without the complexities of a whole organism.
One of the most significant applications of in vitro models has been in studying the effect of this compound on the endometrium. Three-dimensional (3D) human endometrial cell culture models have been developed to mimic the in vivo environment. ec-ec.orgki.seoup.com These models, which co-culture endometrial stromal and epithelial cells, express key markers of endometrial receptivity, such as estrogen and progesterone receptors, as well as various cytokines and adhesion molecules. ki.seoup.com Studies using these 3D constructs have shown that this compound, unlike the antiprogestin mifepristone, does not inhibit the attachment of human blastocysts. ec-ec.orgki.seoup.com This finding has been crucial in refining the understanding of this compound's mechanism in emergency contraception, suggesting it primarily acts by affecting ovulation rather than implantation. ec-ec.orgoup.com
Breast cancer cell lines, such as the estrogen receptor-positive (ER+) MCF-7 cells and the triple-negative MDA-MB-231 cells, are also used to investigate the effects of this compound. farmaciajournal.com Research on these cell lines has explored the dose- and time-dependent effects of this compound on cell viability and proliferation, providing insights into its potential interactions with hormone-sensitive cancers. farmaciajournal.com For example, on MDA-MB-231 cells, this compound has been observed to induce cell proliferation, highlighting the need for further investigation into the molecular mechanisms of progestins in breast cancer. farmaciajournal.com
Other in vitro studies have focused on this compound's effects on sperm function, with some research indicating a dose-dependent impact on sperm velocity and zona-binding capacity. oup.com Additionally, investigations into the metabolism of this compound in various mammalian cell lines have revealed that its metabolic breakdown is both progestin- and cell line-specific, a critical consideration when interpreting results from in vitro studies. nih.gov
Cellular Model | Research Focus | Key Findings | References |
---|---|---|---|
3D Human Endometrial Cell Culture | Endometrial receptivity and embryo implantation | This compound does not inhibit human blastocyst attachment to the endometrial construct. | ec-ec.orgki.seoup.com |
MCF-7 Breast Cancer Cells (ER+) | Effects on hormone-responsive breast cancer | Shows dose- and time-dependent effects on cell viability and proliferation. Ethinylestradiol has a more pronounced stimulatory effect compared to this compound. | farmaciajournal.com |
MDA-MB-231 Breast Cancer Cells (Triple-Negative) | Effects on non-hormone receptor-mediated pathways in breast cancer | This compound induces cell proliferation, suggesting mechanisms independent of classical ER and PR pathways. | farmaciajournal.com |
Human Sperm | Direct effects on sperm function | Dose-dependent effects on sperm velocity and zona-binding capacity have been reported, though results can be divergent. | oup.com |
Various Mammalian Cell Lines (e.g., from liver, kidney) | Differential metabolism of progestins | Metabolism of this compound is cell line-specific, which has implications for the interpretation of biological effects in vitro. | nih.gov |
Pre-clinical Animal Models for Molecular Pathway Elucidation
Pre-clinical animal models are essential for studying the systemic effects of this compound and for elucidating complex molecular pathways that cannot be fully recapitulated in vitro. nih.gov Various animal species, including rodents (mice and rats), rabbits, and nonhuman primates, have been utilized in this compound research. nih.govmpts101.orgbiorxiv.orgnews-medical.net
A significant development in this area is the creation of a mouse model where human endometrial tissue is grafted into severe combined immunodeficient (SCID) mice. nih.govsemanticscholar.org This model allows for the direct study of this compound's effects on human endometrial tissue in vivo. nih.gov Research using this model has shown that this compound induces morphological and immunohistochemical changes in the human endometrial grafts—such as decreased expression of progesterone and estrogen receptors and glandular atrophy—that are similar to those observed in women using this compound-releasing intrauterine devices. nih.govsemanticscholar.org This model is particularly valuable for investigating the mechanisms behind progestin-induced breakthrough bleeding. nih.gov
Rodent models have also been developed to study the behavioral and neuroendocrine effects of oral contraceptives containing this compound. biorxiv.org These studies aim to understand how this compound, often in combination with an estrogen, modulates stress responsivity and mood, providing a platform for mechanistic studies on the interaction between synthetic hormones, stress, and depression. biorxiv.orgnews-medical.net
Nonhuman primates are considered advantageous for late-stage preclinical evaluation due to their anatomical and physiological similarities to humans, especially in reproductive biology. nih.gov Studies in primates have demonstrated that this compound can inhibit ovulation by suppressing estradiol levels and prolonging the menstrual cycle. frontiersin.orgnih.gov These models are crucial for evaluating contraceptive efficacy and understanding the direct impact on the hypothalamic-pituitary-ovarian axis. nih.govfrontiersin.orgnih.gov
Animal Model | Research Application | Significant Observations | References |
---|---|---|---|
SCID Mouse with Human Endometrial Grafts | Studying direct effects on human endometrium in vivo | Mimics LNG-induced changes seen in women, including altered steroid receptor expression and glandular atrophy. | nih.govsemanticscholar.org |
Rat | Pharmacokinetics and progestational/androgenic activity | Used to determine receptor binding affinities and metabolic pathways, such as 5α-reduction. | nih.govtandfonline.com |
Rabbit | Pharmacokinetics and endometrial response | Has been used as a model to study the pharmacokinetics of this compound. | nih.govresearcher.life |
Nonhuman Primate (e.g., Macaques) | Contraceptive efficacy, systemic endocrine effects, and device testing | Demonstrates inhibition of ovulation through suppression of estradiol and disruption of the menstrual cycle. | nih.govmpts101.orgfrontiersin.orgnih.gov |
Implications for Understanding Endogenous Steroid Hormone Action
Research on this compound has significant implications for our broader understanding of endogenous steroid hormone action. By studying the effects of this potent, synthetic progestin, scientists can delineate the signaling pathways and molecular interactions that are also relevant to natural progesterone.
One key area of insight is the modulation of steroid hormone action at the transcriptional level. Studies on endometrial tissue exposed to this compound have shown that it can exert progestational effects, such as decidual transformation, even in the absence of detectable progesterone receptors. oup.comnih.gov This suggests the involvement of alternative signaling pathways. Research has pointed to the interaction between steroid receptors and other transcription factors, like c-JUN/AP-1, as a potential mechanism. oup.comnih.gov The observation that intrauterine this compound maintains a constant expression of c-JUN while downregulating progesterone receptors suggests that the progestational effects of this compound and progesterone may be mediated through different, though possibly overlapping, signaling cascades. oup.comnih.gov
Furthermore, the antigonadotropic effects of this compound, which lead to the suppression of LH, FSH, and consequently, endogenous estradiol and progesterone production, provide a clear model for the negative feedback mechanisms that govern the reproductive axis. britannica.comfrontiersin.orgnih.govwikipedia.org By administering this compound and observing the downstream hormonal changes, researchers can better understand the hierarchical control of the hypothalamus, pituitary, and gonads. drugbank.combritannica.com
The study of this compound's interactions with multiple steroid receptors (PR and AR) also illuminates the concept of receptor cross-talk and the multifaceted nature of hormone action. pharmgkb.orgfrontiersin.org Its androgenic properties, for example, help to explain some of its metabolic effects and provide a basis for comparing the activity of different generations of synthetic progestins. frontiersin.orgglowm.com This comparative pharmacology is essential for developing new hormonal therapies with more specific and targeted actions.
In essence, this compound acts as a powerful pharmacological tool that, through the study of its own mechanisms, enhances our fundamental knowledge of how endogenous steroid hormones function to regulate complex physiological processes.
Q & A
Q. What experimental models are used to assess levonorgestrel-induced hormonal and metabolic changes in preclinical studies?
Rodent models are commonly employed to evaluate this compound's effects on ovulation suppression, lipid metabolism, and oxidative stress. For example, studies may group animals into cohorts receiving varying doses of this compound followed by herbal extracts to assess reversibility of infertility or oxidative damage biomarkers (e.g., lipid peroxidation, superoxide dismutase activity) . Control groups typically receive vehicle-only treatments to isolate drug-specific effects.
Q. How do pharmacokinetic (PK) studies compare systemic exposure of this compound across administration routes?
Integrated population PK (popPK) analyses enable direct comparison of daily doses and exposure levels. For instance, combined oral contraceptives provide the highest systemic this compound exposure (e.g., AUC: 147 ng·h/mL), while intrauterine systems (IUSs) like LNG-IUS 8 yield significantly lower exposure due to localized release (e.g., 30–40 μg/day after 3 years) . Route-specific PK parameters (e.g., bioavailability, half-life) are derived from plasma concentration-time profiles using non-linear mixed-effects modeling.
Q. What methodologies confirm this compound's primary mechanism of action as pre-fertilization ovulation suppression?
Studies track luteinizing hormone (LH) surges, follicular development via ultrasonography, and endometrial histology in non-pregnant cohorts. Data consistently show this compound disrupts ovulation timing without altering post-ovulatory endometrial receptivity markers (e.g., integrin expression, prostaglandin levels) . Pharmacodynamic assays (e.g., hormone quantification) and randomized trials comparing ovulation rates with/without this compound further validate this mechanism .
Advanced Research Questions
Q. How do drug-drug interactions with CYP3A4 inducers impact this compound efficacy, and what study designs address this?
Retrospective cohort analyses identify interactions by correlating unintended pregnancy rates with concomitant use of CYP3A4-inducing drugs (e.g., efavirenz). For example, a study of 570 HIV-positive women using this compound implants found a 12.4% pregnancy rate in efavirenz users versus 0% in nevirapine users, attributed to a 56% reduction in this compound AUC . Prospective crossover trials in healthy volunteers measure PK changes (e.g., AUC, Cmax) when this compound is administered with/without enzyme inducers .
Q. What analytical techniques identify this compound degradation by-products in environmental samples, and how is toxicity assessed?
Liquid chromatography coupled with time-of-flight mass spectrometry (LC-TOF/MS) detects electrochemical degradation by-products (e.g., hydroxylated or cleaved derivatives) in water treatment effluents . Toxicity is evaluated using in vitro bioassays (e.g., estrogen receptor binding) and in vivo models (e.g., zebrafish embryotoxicity) to quantify endocrine-disrupting potential .
Q. How do non-inferiority trials evaluate this compound IUDs versus copper IUDs for emergency contraception?
Trials randomize participants to this compound (52 mg) or copper IUD arms, with primary endpoints defined as pregnancy rates at 1 month. A 2021 trial (N=638) demonstrated non-inferiority of this compound IUDs (0.3% pregnancy rate vs. 0% for copper IUDs; Δ=0.3%, 95% CI: -0.9–1.8) using urine tests and intention-to-treat analysis. Sensitivity analyses exclude participants lost to follow-up to ensure robustness .
Q. What methodologies resolve contradictions in this compound's association with intracranial hypertension (IH)?
Case-control studies stratify IH incidence by progestin type, dose, and duration. For example, Mirena IUD (this compound 20 μg/day) users are compared with non-hormonal IUD cohorts, adjusting for confounding factors (e.g., obesity, prior IH). Pharmacovigilance data mining (e.g., disproportionality analysis using FAERS) identifies signal strengths (e.g., reporting odds ratios) for IH adverse events .
Q. How does effect-directed analysis (EDA) quantify this compound's endocrine-disrupting activity in wastewater?
EDA combines high-resolution fractionation of water samples with in vitro bioassays (e.g., progesterone receptor activation). For instance, this compound in Dutch wastewater was detected at RT 11.12 min via LC-EDA, with progestogenic activity confirmed using T47D-KBluc reporter gene assays (relative potency: 0.46 vs. progesterone) . Target validation via LC-MS/MS ensures specificity despite low environmental concentrations (< method reporting limits).
Methodological Considerations
- Contradiction Analysis : Conflicting data (e.g., variable drug interaction outcomes ) require meta-regression to assess heterogeneity sources (e.g., population differences, assay sensitivity).
- Sensitivity Testing : In systematic reviews, sensitivity analyses exclude studies with high bias risk (e.g., unblinded trials) to verify result stability .
- Ethical Frameworks : Studies on emergency contraception must address informed consent protocols, particularly in vulnerable populations (e.g., post-sexual assault cohorts) .
Retrosynthesis Analysis
AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.
One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.
Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.
Strategy Settings
Precursor scoring | Relevance Heuristic |
---|---|
Min. plausibility | 0.01 |
Model | Template_relevance |
Template Set | Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis |
Top-N result to add to graph | 6 |
Feasible Synthetic Routes
Featured Recommendations
Most viewed | ||
---|---|---|
Most popular with customers |
Disclaimer and Information on In-Vitro Research Products
Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.