molecular formula C20H37NaO7S B194777 Docusate sodium CAS No. 577-11-7

Docusate sodium

Cat. No.: B194777
CAS No.: 577-11-7
M. Wt: 444.6 g/mol
InChI Key: APSBXTVYXVQYAB-UHFFFAOYSA-M
Attention: For research use only. Not for human or veterinary use.
In Stock
  • Click on QUICK INQUIRY to receive a quote from our team of experts.
  • With the quality product at a COMPETITIVE price, you can focus more on your research.

Description

Docusate sodium, also known as dioctyl sodium sulfosuccinate, is a widely used compound in the medical field, primarily as a stool softener. It is an anionic surfactant that helps to increase the amount of water the stool absorbs in the gut, making the stool softer and easier to pass. This compound is commonly used to treat constipation and is available in various forms, including oral and rectal administration .

Safety and Hazards

Docusate Sodium can cause skin irritation and serious eye damage . It is harmful to aquatic life . Contact with eyes or skin can cause burns; ingestion or inhalation can cause internal damage . Immediate medical assistance is required in such cases .

Biochemical Analysis

Biochemical Properties

Docusate Sodium acts as a surfactant laxative, promoting the incorporation of water and fats into the stool through a reduction in surface tension, resulting in a softer fecal mass . This biochemical property allows this compound to interact with the biomolecules within the gastrointestinal tract, particularly the water and lipid components of the stool .

Cellular Effects

This compound exerts its effects on the cells lining the gastrointestinal tract. It increases the secretion of water, sodium, chloride, and potassium, while decreasing the absorption of glucose and bicarbonate . This results in a softer stool that is easier to pass, thereby alleviating constipation .

Molecular Mechanism

The molecular mechanism of this compound involves its surfactant effect in the intestines, which allows fat and water into the feces to soften the stool . This is achieved by reducing the surface tension at the oil-water interface within the stool, thereby facilitating the incorporation of water and lipids into the stool mass .

Temporal Effects in Laboratory Settings

The onset of action of this compound is between 6-72 hours when administered orally, and between 2-15 minutes when administered rectally . The effectiveness of this compound in treating constipation remains unclear, as several studies report it to be no more effective than a placebo for increasing the frequency of stool or stool softening .

Dosage Effects in Animal Models

While this compound is generally considered safe for use in animals, there are potential side effects that pet owners should be aware of. These can include diarrhea, vomiting, abdominal pain, and dehydration . When administered at 3–5 times the recommended dosage, this compound has been reported to produce severe diarrhea, rapid dehydration, and death in horses .

Metabolic Pathways

This compound is metabolized in the liver, where it undergoes significant first-pass metabolism, forming both active and inactive metabolites . Although this compound undergoes hepatic metabolism and has high plasma protein binding, there have been no reports of clinically apparent hepatotoxicity .

Subcellular Localization

Given its function as a stool softener and its mechanism of action, it is likely that this compound primarily localizes within the gastrointestinal tract where it exerts its effects .

Preparation Methods

Synthetic Routes and Reaction Conditions: Docusate sodium is synthesized through the esterification of sulfosuccinic acid with 2-ethylhexanol, followed by neutralization with sodium hydroxide. The reaction typically involves heating the reactants under reflux conditions to facilitate the esterification process. The resulting product is then purified through distillation or recrystallization to obtain this compound in its pure form .

Industrial Production Methods: In industrial settings, this compound is produced on a larger scale using similar synthetic routes. The process involves the continuous esterification of sulfosuccinic acid with 2-ethylhexanol in the presence of a catalyst, followed by neutralization with sodium hydroxide. The product is then subjected to various purification steps, including filtration, distillation, and drying, to achieve the desired purity and quality .

Chemical Reactions Analysis

Types of Reactions: Docusate sodium primarily undergoes hydrolysis and oxidation reactions. In the presence of strong acids or bases, it can hydrolyze to form sulfosuccinic acid and 2-ethylhexanol. Additionally, it can undergo oxidation reactions, especially when exposed to strong oxidizing agents .

Common Reagents and Conditions:

    Hydrolysis: Strong acids (e.g., hydrochloric acid) or bases (e.g., sodium hydroxide) under reflux conditions.

    Oxidation: Strong oxidizing agents (e.g., potassium permanganate) under controlled temperature and pH conditions.

Major Products Formed:

Comparison with Similar Compounds

Uniqueness of Docusate Sodium: this compound is unique in its dual role as a stool softener and an anionic surfactant. Unlike other laxatives that primarily work by osmosis or increasing bowel motility, this compound specifically reduces the surface tension of stools, facilitating the incorporation of water and fats. This unique mechanism makes it particularly effective for patients who need to avoid straining during bowel movements .

Properties

IUPAC Name

sodium;1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C20H38O7S.Na/c1-5-9-11-16(7-3)14-26-19(21)13-18(28(23,24)25)20(22)27-15-17(8-4)12-10-6-2;/h16-18H,5-15H2,1-4H3,(H,23,24,25);/q;+1/p-1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

APSBXTVYXVQYAB-UHFFFAOYSA-M
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CCCCC(CC)COC(=O)CC(C(=O)OCC(CC)CCCC)S(=O)(=O)[O-].[Na+]
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C20H37NaO7S
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Related CAS

10041-19-7 (Parent)
Record name Docusate sodium [USAN:USP:INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0000577117
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.

DSSTOX Substance ID

DTXSID8022959
Record name Docusate sodium
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID8022959
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

444.6 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Commercially available in rolls of very thin wax-like solid; as solution (50-75%) in various solvents; [Merck Index] White waxy solid; [MSDSonline]
Record name Docusate sodium
Source Haz-Map, Information on Hazardous Chemicals and Occupational Diseases
URL https://haz-map.com/Agents/3967
Description Haz-Map® is an occupational health database designed for health and safety professionals and for consumers seeking information about the adverse effects of workplace exposures to chemical and biological agents.
Explanation Copyright (c) 2022 Haz-Map(R). All rights reserved. Unless otherwise indicated, all materials from Haz-Map are copyrighted by Haz-Map(R). No part of these materials, either text or image may be used for any purpose other than for personal use. Therefore, reproduction, modification, storage in a retrieval system or retransmission, in any form or by any means, electronic, mechanical or otherwise, for reasons other than personal use, is strictly prohibited without prior written permission.

Solubility

SOL IN WATER (G/L): 15 (25 °C), 23 (40 °C), 30 (50 °C), 55 (70 °C); SOL IN CARBON TETRACHLORIDE, PETROLEUM ETHER, NAPHTHA, XYLENE, DIBUTYL PHTHALATE, LIQUID PETROLATUM, ACETONE, ALCOHOL, VEGETABLE OILS; VERY SOL IN WATER-MISCIBLE ORGANIC SOLVENTS, FREELY SOL IN GLYCERIN, Water Solubility = 71000 mg/L @ 25 °C
Record name BIS(2-ETHYLHEXYL) SODIUM SULFOSUCCINATE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3065
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Mechanism of Action

In vitro studies suggest that these salts of dioctylsulfosuccinic acid lower the surface tension of the stool to permit water and lipids to enter more readily and thus soften the feces. ... More recent evidence indicates that they may stimulate the secretion of water and electrolytes on contact with the mucosa., Reduce surface film tension of interfacing liquid contents of the bowel, promoting permeation of additional liquid into the stool to form a softer mass. /Laxatives/
Record name BIS(2-ETHYLHEXYL) SODIUM SULFOSUCCINATE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3065
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Color/Form

WHITE, WAX-LIKE SOLID

CAS No.

577-11-7
Record name Docusate sodium [USAN:USP:INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0000577117
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Docusate sodium
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID8022959
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Docusate sodium
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.008.553
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name DOCUSATE SODIUM
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/F05Q2T2JA0
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name BIS(2-ETHYLHEXYL) SODIUM SULFOSUCCINATE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3065
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Reactant of Route 1
Docusate sodium
Reactant of Route 2
Reactant of Route 2
Reactant of Route 2
Docusate sodium
Reactant of Route 3
Docusate sodium
Reactant of Route 4
Docusate sodium
Reactant of Route 5
Docusate sodium
Reactant of Route 6
Docusate sodium

Disclaimer and Information on In-Vitro Research Products

Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.