molecular formula C20H31CaN7O12 B3425470 CID 135738681 CAS No. 41927-89-3

CID 135738681

Cat. No.: B3425470
CAS No.: 41927-89-3
M. Wt: 601.6 g/mol
InChI Key: NPPBLUASYYNAIG-ZIGBGYJWSA-L
Attention: For research use only. Not for human or veterinary use.
In Stock
  • Click on QUICK INQUIRY to receive a quote from our team of experts.
  • With the quality product at a COMPETITIVE price, you can focus more on your research.

Description

The compound with the identifier “CID 135738681” is a chemical entity listed in the PubChem database. It is characterized by its unique molecular structure and properties, which make it of interest in various scientific fields.

Scientific Research Applications

CID 135738681 has a wide range of applications in scientific research:

    Chemistry: It is used as a reagent in various organic synthesis reactions.

    Biology: It serves as a tool for studying biochemical pathways and molecular interactions.

    Medicine: It is investigated for its potential therapeutic effects and as a lead compound in drug development.

    Industry: It is utilized in the production of specialty chemicals and materials.

Mechanism of Action

Calcium folinate works by enhancing the effects of folic acid in the body . It is taken up by cells through a specific transporter protein and converted into the active form of folic acid, which can be used by cells to produce DNA and form new cells .

Safety and Hazards

Calcium folinate may cause respiratory irritation, allergy or asthma symptoms, serious eye irritation, and allergic skin reaction . It is recommended to avoid dust formation, breathing mist, gas or vapours, and contacting with skin and eye .

Future Directions

Calcium folinate is frequently used to diminish the toxicity and counteract the action of folate antagonists, such as methotrexate . Future research may focus on its potential uses in other medical conditions and its interaction with other drugs .

Preparation Methods

Synthetic Routes and Reaction Conditions

The preparation of CID 135738681 involves specific synthetic routes. One such method includes reacting 2-fluoro-4-substituted phenylacetic acid with a Vilsmeier reagent, followed by quenching the reaction solution in an aqueous solution to obtain an intermediate . This intermediate is then further processed to yield the final compound.

Industrial Production Methods

Industrial production methods for this compound typically involve large-scale synthesis using optimized reaction conditions to ensure high yield and purity. The exact details of these methods are often proprietary and may vary between manufacturers.

Chemical Reactions Analysis

Types of Reactions

CID 135738681 undergoes various chemical reactions, including:

    Oxidation: This reaction involves the addition of oxygen or the removal of hydrogen.

    Reduction: This reaction involves the addition of hydrogen or the removal of oxygen.

    Substitution: This reaction involves the replacement of one atom or group of atoms with another.

Common Reagents and Conditions

Common reagents used in these reactions include oxidizing agents like potassium permanganate, reducing agents like lithium aluminum hydride, and various nucleophiles for substitution reactions. The conditions for these reactions typically involve controlled temperatures and pH levels to ensure the desired outcome.

Major Products

The major products formed from these reactions depend on the specific reagents and conditions used. For example, oxidation may yield carboxylic acids, while reduction may produce alcohols.

Comparison with Similar Compounds

Similar Compounds

Similar compounds to CID 135738681 include other fluorinated phenylacetic acid derivatives and related chemical entities. These compounds share structural similarities but may differ in their specific functional groups and properties.

Uniqueness

What sets this compound apart from similar compounds is its unique combination of functional groups and molecular structure, which confer specific reactivity and biological activity. This uniqueness makes it a valuable compound for targeted research and applications.

Conclusion

This compound is a versatile compound with significant importance in various scientific fields. Its unique properties and reactivity make it a valuable tool for research and industrial applications.

Properties

CAS No.

41927-89-3

Molecular Formula

C20H31CaN7O12

Molecular Weight

601.6 g/mol

IUPAC Name

calcium;(2S)-2-[[4-[(2-amino-5-formyl-4-oxo-3,6,7,8-tetrahydropteridin-6-yl)methylamino]benzoyl]amino]pentanedioate;pentahydrate

InChI

InChI=1S/C20H23N7O7.Ca.5H2O/c21-20-25-16-15(18(32)26-20)27(9-28)12(8-23-16)7-22-11-3-1-10(2-4-11)17(31)24-13(19(33)34)5-6-14(29)30;;;;;;/h1-4,9,12-13,22H,5-8H2,(H,24,31)(H,29,30)(H,33,34)(H4,21,23,25,26,32);;5*1H2/q;+2;;;;;/p-2/t12?,13-;;;;;;/m0....../s1

InChI Key

NPPBLUASYYNAIG-ZIGBGYJWSA-L

Isomeric SMILES

C1C(N(C2=C(N1)N=C(NC2=O)N)C=O)CNC3=CC=C(C=C3)C(=O)N[C@@H](CCC(=O)[O-])C(=O)[O-].O.O.O.O.O.[Ca+2]

SMILES

C1C(N(C2=C(N1)N=C(NC2=O)N)C=O)CNC3=CC=C(C=C3)C(=O)NC(CCC(=O)O)C(=O)O.O.O.O.O.O.[Ca]

Canonical SMILES

C1C(N(C2=C(N1)N=C(NC2=O)N)C=O)CNC3=CC=C(C=C3)C(=O)NC(CCC(=O)[O-])C(=O)[O-].O.O.O.O.O.[Ca+2]

Related CAS

58-05-9 (Parent)

solubility

DMSO « 1 (mg/mL)
H2O 100 (mg/mL)
0.1 N NaOH < 20 (mg/mL)

Origin of Product

United States

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
CID 135738681
Reactant of Route 2
CID 135738681
Reactant of Route 3
CID 135738681
Reactant of Route 4
Reactant of Route 4
CID 135738681
Reactant of Route 5
Reactant of Route 5
CID 135738681
Reactant of Route 6
Reactant of Route 6
CID 135738681

Disclaimer and Information on In-Vitro Research Products

Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.