molecular formula C35H38Cl2N8O4 B1672688 Itraconazole CAS No. 84625-61-6

Itraconazole

Katalognummer: B1672688
CAS-Nummer: 84625-61-6
Molekulargewicht: 705.6 g/mol
InChI-Schlüssel: VHVPQPYKVGDNFY-WSTHBRJPSA-N
Achtung: Nur für Forschungszwecke. Nicht für den menschlichen oder tierärztlichen Gebrauch.
Auf Lager
  • Klicken Sie auf QUICK INQUIRY, um ein Angebot von unserem Expertenteam zu erhalten.
  • Mit qualitativ hochwertigen Produkten zu einem WETTBEWERBSFÄHIGEN Preis können Sie sich mehr auf Ihre Forschung konzentrieren.

Eigenschaften

Key on ui mechanism of action

Itraconazole mediates its antifungal activity by inhibiting 14α-demethylase, a fungal cytochrome P450 enzyme that converts lanosterol to ergosterol, a vital component of fungal cell membranes. The azole nitrogen atoms in the chemical structure of itraconazole form a complex with the active site, or the haem iron, of the fungal enzyme to impede its function. The accumulation of lanosterol and 14-methylated sterols results in increased permeability of the fungal cell membrane, and modified membrane-bound enzyme activity, and dysregulated chitin synthesis. Other proposed mechanisms of action of itraconazole include the inhibition of fungal cytochrome c oxidative and peroxidative enzymes that also lead to the disruption of fungal cell membranes.
In vitro studies have demonstrated that itraconazole inhibits the cytochrome P450-dependent synthesis of ergosterol, which is a vital component of fungal cell membranes.

CAS-Nummer

84625-61-6

Molekularformel

C35H38Cl2N8O4

Molekulargewicht

705.6 g/mol

IUPAC-Name

2-butan-2-yl-4-[4-[4-[4-[[(2R)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one

InChI

InChI=1S/C35H38Cl2N8O4/c1-3-25(2)45-34(46)44(24-40-45)29-7-5-27(6-8-29)41-14-16-42(17-15-41)28-9-11-30(12-10-28)47-19-31-20-48-35(49-31,21-43-23-38-22-39-43)32-13-4-26(36)18-33(32)37/h4-13,18,22-25,31H,3,14-17,19-21H2,1-2H3/t25?,31?,35-/m0/s1

InChI-Schlüssel

VHVPQPYKVGDNFY-WSTHBRJPSA-N

Verunreinigungen

Impurities: 4-[4-[4-(4-methoxyphenyl)piperazin-1-yl]phenyl]-2-[(1RS)-1-methylpropyl]-2,4-dihydro-3H-1,2,4-triazol-3-one;  4-[4-[4-[4-[[cis-2-(2,4-dichlorophenyl)-2-(4H-1,2,4-triazol-4-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-2-[(1RS)-1-methylpropyl]-2,4-dihydro-3H-1,2,4-triazol-3-one;  4-[4-[4-[4-[[cis-2-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-2-propyl-2,4-dihydro-3H-1,2,4-triazol-3-one;  4-[4-[4-[4-[[cis-2-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-2-(1-methylethyl)-2,4-dihydro-3H-1,2,4-triazol-3-one;  4-[4-[4-[4-[[trans-2-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-2-[(1RS)-1-methylpropyl]-2,4-dihydro-3H-1,2,4-triazol-3-one;  2-butyl-4-[4-[4-[4-[[cis-2-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-2,4-dihydro-3H-1,2,4-triazol-3-one;  4-[4-[4-[4-[[cis-2-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-2-[[cis-2-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methyl]-2,4-dihydro-3H-1,2,4-triazol-3-one.

SMILES

CCC(C)N1C(=O)N(C=N1)C2=CC=C(C=C2)N3CCN(CC3)C4=CC=C(C=C4)OCC5COC(O5)(CN6C=NC=N6)C7=C(C=C(C=C7)Cl)Cl

Isomerische SMILES

CCC(C)N1C(=O)N(C=N1)C2=CC=C(C=C2)N3CCN(CC3)C4=CC=C(C=C4)OCC5CO[C@](O5)(CN6C=NC=N6)C7=C(C=C(C=C7)Cl)Cl

Kanonische SMILES

CCC(C)N1C(=O)N(C=N1)C2=CC=C(C=C2)N3CCN(CC3)C4=CC=C(C=C4)OCC5COC(O5)(CN6C=NC=N6)C7=C(C=C(C=C7)Cl)Cl

Aussehen

Solid powder

Color/Form

Solid
Crystals from toluene

melting_point

168-170
166.2 °C

Andere CAS-Nummern

84625-61-6
84604-65-9

Physikalische Beschreibung

Solid

Piktogramme

Irritant

Reinheit

>98% (or refer to the Certificate of Analysis)

Haltbarkeit

>2 years if stored properly

Löslichkeit

Practically insoluble in water and dilute acidic solutions

Lagerung

Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Synonyme

Itraconazole, R51211, Orungal, Oriconazole, Sporanox, Itraconazolum, Itraconazol, Itrizole

Dampfdruck

2.6X10-20 mm Hg at 25 °C (est)

Herkunft des Produkts

United States

Vorbereitungsmethoden

Traditional Synthesis Using Triazole Intermediates

The foundational synthesis of this compound involves constructing its triazole core through multi-step reactions. A pivotal intermediate, 2,4-dihydro-4-[4-[4-[(4-hydroxyphenyl)-1-piperazinyl]phenyl]-2-(1-methylpropyl)-3H-1,2,4-triazol-3-one (Formula III), is purified using methanol and dimethylformamide (DMF) to achieve >98% purity. Subsequent condensation with 2-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl-methyl)-1,3-dioxolane-4-methanol-4-methyl sulfonate (Formula II) yields crude cis-itraconazole (Formula IV), which undergoes recrystallization in ethanol or acetonitrile.

Key Reaction Parameters

  • Solvent System : Methanol:DMF (3:1 v/v)
  • Temperature : 45–50°C
  • Yield : 72–78% after purification

Improved Intermediate Synthesis via One-Step Alkylation

Patent CN101391994B introduces a streamlined method for synthesizing triazole intermediates, replacing hazardous sodium hydride with polyethylene glycol catalysts. This approach reduces production steps from three to one, achieving 80–85% yield while maintaining isomer impurities <11%.

Advantages Over Traditional Methods

  • Eliminates explosive hydrogenation steps
  • Reduces production costs by 40%
  • Enhances scalability for industrial manufacturing

Purification and Crystallization Techniques

Supercritical Fluid Crystallization

GB2551672A details a supercritical CO₂-assisted crystallization method that enhances this compound’s solubility and bioavailability. The process involves:

  • Dissolving this compound and L-ascorbic acid in methanol:dichloromethane (1:1–1:9 v/v)
  • Adding hydroxypropyl methylcellulose and pluronic F-127 as stabilizers
  • Spraying the solution into a CO₂-saturated autoclave at 50–130 Bar

Results

  • Particle size reduction to 200–500 nm
  • Bioavailability increase from 55% to 92% in preclinical models
  • Surfactant-free formulation minimizing gastrointestinal side effects

Recrystallization Solvent Optimization

Comparative studies show that ethyl acetate produces this compound crystals with optimal polymorphic Form I, critical for consistent dissolution rates. Ethanol and acetonitrile are preferred for intermediate purification, reducing residual solvents to <0.1%.

Analytical Methods for Quality Control

High-Performance Liquid Chromatography (HPLC)

The FDA mandates HPLC with UV detection (λ=263 nm) to quantify this compound and its metabolites. Column: C18, 5 μm; Mobile phase: acetonitrile:phosphate buffer (pH 3.0) (55:45).

Critical Quality Attributes

  • Purity: ≥99.5%
  • Isomer content: ≤0.5%
  • Residual solvents: Methanol <3,000 ppm, DMF <880 ppm

X-Ray Diffraction for Polymorph Characterization

XRD analysis confirms the dominance of the bioactive Form I crystal, exhibiting peaks at 2θ=12.8°, 15.4°, and 21.7°. Amorphous content is controlled to <5% via optimized annealing at 80°C for 24 hrs.

Formulation Strategies for Enhanced Delivery

Oral Solution Pharmacokinetics

The FDA-approved oral solution (SPORANOX®) uses hydroxypropyl-β-cyclodextrin to enhance solubility, achieving Cₘₐₓ=2 μg/mL after 200 mg dosing. Steady-state concentrations require 15 days of administration due to this compound’s nonlinear pharmacokinetics (t₁/₂=34–42 hrs).

Excipient Composition

Component Function Concentration (%)
Hydrochloric acid pH adjustment 0.1–0.3
Propylene glycol Solubilizer 15–20
Sodium saccharin Sweetener 0.05–0.1

Nanoparticle Encapsulation

Recent advances utilize PLGA nanoparticles (150–220 nm) loaded via emulsion-diffusion:

  • Encapsulation efficiency: 88–92%
  • Sustained release over 72 hrs in simulated gastric fluid
  • 3-fold increase in mucosal adhesion compared to conventional capsules

Comparative Analysis of Industrial Methods

Method Yield (%) Purity (%) Cost ($/kg) Scalability
Traditional 72–78 98.5–99.2 12,500 Moderate
Supercritical 89–93 99.8–99.9 8,200 High
One-Step Alkylation 80–85 99.1–99.4 7,800 High

Analyse Chemischer Reaktionen

Types of Reactions: Itraconazole undergoes several types of chemical reactions, including oxidation, reduction, and substitution.

Common Reagents and Conditions:

Major Products Formed: The major metabolites of this compound include hydroxy-itraconazole, keto-itraconazole, and N-desalkyl-itraconazole .

Wissenschaftliche Forschungsanwendungen

Systemic Fungal Infections

Itraconazole is primarily indicated for the treatment of several serious fungal infections, including:

  • Blastomycosis : Effective in both pulmonary and extrapulmonary forms.
  • Histoplasmosis : Particularly useful for chronic cavitary pulmonary disease and disseminated forms.
  • Aspergillosis : Recommended for patients intolerant to or refractory to amphotericin B therapy .

Superficial Fungal Infections

This compound is also used to treat superficial fungal infections, notably:

  • Onychomycosis : The treatment has a cure rate of approximately 63% .
  • Seborrheic Dermatitis : Although not FDA-approved for this indication, this compound has shown efficacy when administered in pulse therapy .

Prophylactic Use

This compound is utilized as a prophylactic agent in immunocompromised patients, including those with:

  • HIV/AIDS
  • Patients undergoing chemotherapy
  • Individuals who have received organ transplants

The broad-spectrum coverage and safety profile make this compound a preferred choice for preventing systemic fungal infections in these populations .

Oncological Applications

Recent research has highlighted this compound's potential in cancer treatment:

  • Inhibition of Tumor Growth : this compound has been shown to inhibit the Hedgehog signaling pathway, which is involved in cancer cell proliferation. Studies indicate that this compound can induce autophagy-mediated cell death in colon cancer cells, leading to significant tumor growth suppression in animal models .
  • Enhanced Chemosensitivity : A clinical retrospective study found that combining this compound with platinum-based chemotherapy improved progression-free survival and overall survival rates in ovarian cancer patients compared to chemotherapy alone .

Formulation and Bioavailability

The pharmacological advancements surrounding this compound have led to the development of various formulations:

  • Oral Solutions and Intravenous Formulations : These formulations enhance solubility and bioavailability, making this compound accessible for patients with systemic fungal infections who may have variable absorption from capsule formulations .

Efficacy in Immunocompromised Patients

A study involving patients with HIV demonstrated that those receiving this compound prophylaxis had significantly lower incidences of systemic fungal infections compared to those who did not receive prophylaxis.

Cancer Treatment Trials

Clinical trials exploring the use of this compound in combination with standard chemotherapy regimens have shown promising results, particularly in improving patient outcomes in ovarian cancer.

Summary Table of Applications

Application AreaSpecific UsesFDA Approval Status
Systemic Fungal InfectionsBlastomycosis, Histoplasmosis, AspergillosisYes
Superficial Fungal InfectionsOnychomycosis, Seborrheic DermatitisPartial (Onychomycosis only)
ProphylaxisHIV/AIDS, Chemotherapy, Organ TransplantsYes
OncologyTumor growth inhibitionResearch Phase

Wirkmechanismus

Itraconazole exerts its antifungal effects by inhibiting the enzyme lanosterol 14α-demethylase, a cytochrome P450 enzyme involved in the conversion of lanosterol to ergosterol. Ergosterol is a crucial component of fungal cell membranes. By inhibiting this enzyme, this compound disrupts the synthesis of ergosterol, leading to increased membrane permeability and ultimately fungal cell death .

Vergleich Mit ähnlichen Verbindungen

Itraconazole is often compared with other triazole antifungal agents such as fluconazole, voriconazole, and posaconazole:

This compound’s unique properties, such as its broad-spectrum activity and potential use in cancer treatment, make it a valuable compound in both clinical and research settings.

Q & A

Basic Research Questions

Q. What chromatographic methods are validated for simultaneous quantification of itraconazole with other antifungals, and how are critical parameters optimized?

  • Methodological Answer : Reverse-phase high-performance liquid chromatography (RP-HPLC) with a Zorbax Eclipse C18 column is recommended. Optimize parameters (e.g., mobile phase pH, flow rate) using a 2³ factorial design to assess resolution, tailing, and theoretical plates. Validation includes robustness testing via fractional factorial design . For example, Roshdy et al. (2021) resolved this compound alongside fluconazole and terbinafine by analyzing interactions between independent variables (e.g., acetonitrile percentage) and responses (e.g., resolution R1–R4) .

Q. How should researchers design in vitro release studies for this compound-loaded nanoparticles to ensure reproducibility?

  • Methodological Answer : Use phosphate-buffered saline (pH 6.8) at 37°C with sink conditions. Employ a minimum of five replicates (n=5) and report mean ± SEM. For example, in vitro release profiles of this compound from PLGA nanoparticles (F4, F7, F8) showed sustained release over 24 hours, with formulation variables (e.g., PLGA concentration) impacting release kinetics .

Q. What are the standard protocols for assessing this compound’s antifungal activity in preclinical models?

  • Methodological Answer : Use broth microdilution assays per CLSI guidelines (e.g., MIC determination against Aspergillus or Candida). Include controls for pH-dependent solubility and serum protein binding, as this compound’s efficacy is influenced by physiological conditions. Liu et al. (2011) demonstrated improved antifungal activity of pyridine-substituted analogues under standardized testing .

Advanced Research Questions

Q. How can response surface methodology (RSM) optimize this compound multiparticulate systems for enhanced dissolution and reduced adhesion?

  • Methodological Answer : Apply central composite design (CCD) to variables like drug-carrier mass ratio and core weight gain. Use response variables (e.g., accumulative dissolution rate, adhesion rate) to generate polynomial equations. For example, Sadalge et al. (2024) optimized this compound pellets using CCD, validated by SEM and XRD to confirm amorphous dispersion .

Q. What experimental design principles are critical for formulating this compound-loaded PLGA nanoparticles with high encapsulation efficiency?

  • Methodological Answer : Employ a 2³ factorial design to evaluate PLGA concentration (X1), benzyl benzoate (X2), and drug loading (X3). Use ANOVA to identify significant factors (e.g., PLGA% impacts particle size, F-test p < 0.05) and derive regression models for response optimization (e.g., ITRAe = 250.5 + 25.3X1 – 18.7X2) .

Q. How can pharmacokinetic-pharmacodynamic (PK-PD) modeling resolve contradictions in this compound’s concentration-dependent antitumor effects?

  • Methodological Answer : Perform noncompartmental PK analysis to quantify plasma/tumor this compound levels. Correlate with pharmacodynamic endpoints (e.g., tumor perfusion via MRI, cytokine levels) using Spearman rank correlation. Gerber et al. (2020) linked higher tumor this compound concentrations to reduced Ktrans (perfusion) and IL1b/GM-CSF levels (ρ = -0.71, p < 0.05) .

Q. What statistical strategies address robustness in HPLC method validation for this compound impurity profiling?

  • Methodological Answer : Use fractional factorial design (e.g., 2⁴⁻¹) to test factors like column temperature and mobile phase composition. Assess system suitability parameters (e.g., tailing factor, theoretical plates). Kasagić et al. (2013) validated a method for this compound impurities B/F, confirming robustness via controlled variability in retention times (<2% RSD) .

Q. How should window-of-opportunity trials be designed to evaluate this compound’s antivascular effects in non-small cell lung cancer (NSCLC)?

  • Methodological Answer : Administer this compound (300 mg BID) pre-surgically for 10–14 days. Use dynamic contrast-enhanced MRI for tumor perfusion (Ktrans) and collect paired biopsies for biomarker analysis (e.g., microvessel density). Gerber et al. (2020) demonstrated dose-dependent reductions in tumor volume and perfusion, validated by metabolic profiling .

Key Methodological Considerations

  • Experimental Design : Prioritize factorial designs (e.g., 2³, CCD) over one-factor-at-a-time approaches to capture interactions .
  • Statistical Analysis : Use ANOVA for factorial experiments and Spearman correlations for nonparametric PK-PD relationships .
  • Characterization Techniques : SEM, XRD, and DSC are critical for confirming drug-polymer interactions in formulations .

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Itraconazole
Reactant of Route 2
Reactant of Route 2
Itraconazole

Haftungsausschluss und Informationen zu In-Vitro-Forschungsprodukten

Bitte beachten Sie, dass alle Artikel und Produktinformationen, die auf BenchChem präsentiert werden, ausschließlich zu Informationszwecken bestimmt sind. Die auf BenchChem zum Kauf angebotenen Produkte sind speziell für In-vitro-Studien konzipiert, die außerhalb lebender Organismen durchgeführt werden. In-vitro-Studien, abgeleitet von dem lateinischen Begriff "in Glas", beinhalten Experimente, die in kontrollierten Laborumgebungen unter Verwendung von Zellen oder Geweben durchgeführt werden. Es ist wichtig zu beachten, dass diese Produkte nicht als Arzneimittel oder Medikamente eingestuft sind und keine Zulassung der FDA für die Vorbeugung, Behandlung oder Heilung von medizinischen Zuständen, Beschwerden oder Krankheiten erhalten haben. Wir müssen betonen, dass jede Form der körperlichen Einführung dieser Produkte in Menschen oder Tiere gesetzlich strikt untersagt ist. Es ist unerlässlich, sich an diese Richtlinien zu halten, um die Einhaltung rechtlicher und ethischer Standards in Forschung und Experiment zu gewährleisten.